PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
author:(Imen flexi-Slim)
1.  Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats 
Nutrition Research and Practice  2013;7(6):466-474.
Despite the reports on safety concerns regarding the relationship between aluminum salts and neurological and bone disease, many countries continue to use aluminum as phosphate binders among patients with renal failure. In search for a diet supplement that could reduce aluminum toxicity related to renal failure, we carried out this prospective animal study in which the fenugreek seeds were assessed for their effects on rats nephrotoxicity induced by aluminum chloride (AlCl3). Oral AlCl3 administration during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) led to plasma biochemical changes, an inhibition of alkaline phosphatase (ALP), a decrease of total antioxidant status (TAS), and an induction of lipid peroxidation (LPO) in the blood and brain, in addition to kidney atrophy and morphological alterations at the level of Bowman's capsule, the glomerulus and different sorts of tubules, reminiscent of some known kidney disease. The treatment with the whole fenugreek seed powder (FSP) (5% in the diet) during the last 2 months showed its effectiveness in restoring normal plasma values of urea, creatinine, ALP and glucose, as well as re-increasing the TAS, inhibiting LPO and alleviating histopathological changes in the injured kidneys. This study highlights the induced nephrotoxicicity, as well as the related toxicity in the brain and bone, by chronic oral ingestion of the aluminum salts. However, the maintenance of a diet supplemented with fenugreek seeds could offer protection for the kidney, bone and brain, at the same time.
doi:10.4162/nrp.2013.7.6.466
PMCID: PMC3865269  PMID: 24353832
Aluminum; renal insufficiency; Trigonella foenum-graecum; rat
2.  Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity 
Background
Having considered how bioavailable aluminium (Al) may affect ecological systems and animals living there, especially cattle, and in search for a preventive dietary treatment against Al toxicity, we aimed to test the protective role of fenugreek seeds against chronic liver injury induced by aluminum chloride (AlCl3) in Wistar rats.
Results
Five months of AlCl3 oral exposure (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) caused liver atrophy, an inhibition of aspartate transaminase (AST), alanine transaminase (ALT) and glutamyl transpeptidase (GGT), an enhancement of both lipid peroxidation and lactate dehydrogenase (LDH) activity and an increase of total protein level in liver. Moreover, histopathological and histochemical examinations revealed moderate alterations in the hepatic parenchyma in addition to a disrupted iron metabolism. Co-administration of fenugreek seed powder (FSP) at 5% in pellet diet during two months succeeded to antagonize the harmful effects of AlCl3 by restoring all tested parameters.
Conclusion
This study highlighted the hepatotoxicity of AlCl3 through biochemical and histological parameters in one hand and the hepatoprotective role of fenugreek seeds on the other hand. Thus this work could be a pilot study which will encourage farmers to use fenugreek seeds as a detoxifying diet supplement for domestic animals.
doi:10.1186/1746-6148-9-22
PMCID: PMC3568417  PMID: 23363543
AlCl3; Liver; Trigonella foenum-graecum; Lipid peroxidation; Histopathology; Iron metabolism
3.  Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity. modulatory effect of fenugreek seeds 
Background
Peroxidation of lipid (LPO) membrane and cholesterol metabolism have been involved in the physiopathology of many diseases of aging brain. Therefore, this prospective animal study was carried firstly to find out the correlation between LPO in posterior brain and plasmatic cholesterol along with lipoprotein levels after chronic intoxication by aluminium chloride (AlCl3). Chronic aluminum-induced neurotoxicity has been in fact related to enhanced brain lipid peroxidation together with hypercholesterolemia and hypertriglyceridemia, despite its controversial etiological role in neurodegenerative diseases. Secondly an evaluation of the effectiveness of fenugreek seeds in alleviating the engendered toxicity through these biochemical parameters was made.
Results
Oral administration of AlCl3 to rats during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via the drinking water) enhanced the levels of LPO in posterior brain, liver and plasma together with lactate dehydrogenase (LDH) activities, total cholesterol (TC), triglycerides (TG) and LDL-C (Low Density Lipoproteins) levels. All these parameters were decreased following fenugreek seeds supplementation either as fenugreek seed powder (FSP) or fenugreek seed extract (FSE). A notable significant correlation was observed between LPObrain and LDL-C on one hand and LDHliver on the other hand. This latter was found to correlate positively with TC, TG and LDL-C. Furthermore, high significant correlations were observed between LDHbrain and TC, TG, LDL-C, LPObrain as well as LDHliver.
Conclusion
Aluminium-induced LPO in brain could arise from alteration of lipid metabolism particularly altered lipoprotein metabolism rather than a direct effect of cholesterol oxidation. Fenugreek seeds could play an anti-peroxidative role in brain which may be attributed in part to its modulatory effect on plasmatic lipid metabolism.
doi:10.1186/1476-511X-11-16
PMCID: PMC3296590  PMID: 22280491

Results 1-3 (3)