Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)
Year of Publication
Document Types
1.  Turning single cells into microarrays by super-resolution barcoding 
In this review, we discuss a strategy to bring genomics and proteomics into single cells by super-resolution microscopy. The basis for this new approach are the following: given the 10 nm resolution of a super-resolution microscope and a typical cell with a size of (10 µm)3, individual cells contain effectively 109 super-resolution pixels or bits of information. Most eukaryotic cells have 104 genes and cellular abundances of 10–100 copies per transcript. Thus, under a super-resolution microscope, an individual cell has 1000 times more pixel volume or information capacities than is needed to encode all transcripts within that cell. Individual species of mRNA can be uniquely identified by labeling them each with a distinct combination of fluorophores by fluorescence in situ hybridization. With at least 15 fluorophores available in super-resolution, hundreds of genes in can be barcoded with a three-color barcode (3C15 = 455). These calculations suggest that by combining super-resolution microscopy and barcode labeling, single cells can be turned into informatics platforms denser than microarrays and that molecular species in individual cells can be profiled in a massively parallel fashion.
PMCID: PMC3609437  PMID: 23178478
super-resolution microscopy; systems biology; single cells; single-molecule FISH
2.  Restoring totipotency through epigenetic reprogramming 
Briefings in Functional Genomics  2012;12(2):118-128.
Epigenetic modifications are implicated in the maintenance and regulation of transcriptional memory by marking genes that were previously transcribed to facilitate transmission of these expression patterns through cell division. During germline specification and maintenance, extensive epigenetic modifications are acquired. Yet somehow at fertilization, the fusion of the highly differentiated sperm and egg results in formation of the totipotent zygote. This massive change in cell fate implies that the selective erasure and maintenance of epigenetic modifications at fertilization may be critical for the re-establishment of totipotency. In this review, we discuss recent studies that provide insight into the extensive epigenetic reprogramming that occurs around fertilization and the mechanisms that may be involved in the re-establishment of totipotency in the embryo.
PMCID: PMC4023274  PMID: 23117862
3.  Genomics of sex determination in Drosophila 
Briefings in Functional Genomics  2012;11(5):387-394.
Drosophilists have identified many, or perhaps most, of the key regulatory genes determining sex using classical genetics, however, regulatory genes must ultimately result in the deployment of the genome in a quantitative manner, replete with complex interactions with other regulatory pathways. In the last decade, genomics has provided a rich picture of the transcriptional profile of the sexes that underlies sexual dimorphism. The current challenge is linking transcriptional profiles with the regulatory genes. This will be a complex synthesis, but the prospects for progress are outstanding.
PMCID: PMC3459014  PMID: 23023665
drosophila; transcriptome; sex determination; effector; selector
4.  Interpreting the regulatory genome: the genomics of transcription factor function in Drosophila melanogaster 
Briefings in Functional Genomics  2012;11(5):336-346.
Researchers have now had access to the fully sequenced Drosophila melanogaster genome for over a decade, and the sequenced genomes of 11 additional Drosophila species have been available for almost 5 years, with more species’ genomes becoming available every year [Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000;287:2185–95; Clark AG, Eisen MB, Smith DR, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007;450:203–18]. Although the best studied of the D. melanogaster transcription factors (TFs) were cloned before sequencing of the genome, the availability of sequence data promised to transform our understanding of TFs and gene regulatory networks. Sequenced genomes have allowed researchers to generate tools for high-throughput characterization of gene expression levels, genome-wide TF localization and analyses of evolutionary constraints on DNA elements across multiple species. With an estimated 700 DNA-binding proteins in the Drosophila genome, it will be many years before each potential sequence-specific TF is studied in detail, yet the last decade of functional genomics research has already impacted our view of gene regulatory networks and TF DNA recognition.
PMCID: PMC3459015  PMID: 23023663
Drosophila; transcription factor; genomics; enhancer; Zelda
5.  Regulatory RNAs in the light of Drosophila genomics 
Briefings in Functional Genomics  2012;11(5):356-365.
Many aspects of gene regulation are mediated by RNA molecules. However, regulatory RNAs have remained elusive until very recently. At least three types of small regulatory RNAs have been characterized in Drosophila: microRNAs (miRNAs), piwi-interacting RNAs and endogenous siRNAs. A fourth class of regulatory RNAs includes known long non-coding RNAs such as roX1 or bxd. The initial sequencing of the Drosophila melanogaster genome has served as a scaffold to study the transcriptional profile of an animal, revealing the complexities of the function and biogenesis of regulatory RNAs. The comparative analysis of 12 Drosophila genomes has been crucial for the study of microRNA evolution. However, comparative genomics of other RNA regulators is confounded by technical problems: genomic loci are poorly conserved and frequently encoded in the heterochromatin. Future developments in genome sequencing and population genomics in Drosophila will continue to shed light on the conservation, evolution and function of regulatory RNAs.
PMCID: PMC4007103  PMID: 22956639
Non-coding RNA; miRNA; piRNA; siRNA; transposable elements; gene regulation
6.  WRAD: enabler of the SET1-family of H3K4 methyltransferases 
Briefings in Functional Genomics  2012;11(3):217-226.
Methylation of histone H3 at lysine 4 (H3K4) is a conserved feature of active chromatin catalyzed by methyltransferases of the SET1-family (SET1A, SET1B, MLL1, MLL2, MLL3 and MLL4 in humans). These enzymes participate in diverse gene regulatory networks with a multitude of known biological functions, including direct involvement in several human disease states. Unlike most lysine methyltransferases, SET1-family enzymes are only fully active in the context of a multi-subunit complex, which includes a protein module comprised of WDR5, RbBP5, ASH2L and DPY-30 (WRAD). These proteins bind in close proximity to the catalytic SET domain of SET1-family enzymes and stimulate H3K4 methyltransferase activity. The mechanism by which WRAD promotes catalysis involves elements of allosteric control and possibly the utilization of a second H3K4 methyltransferase active site present within WRAD itself. WRAD components also engage in physical interactions that recruit SET1-family proteins to target sites on chromatin. Here, the known molecular mechanisms through which WRAD enables the function of SET1-related enzymes will be reviewed.
PMCID: PMC3388306  PMID: 22652693
7.  The amphioxus genome provides unique insight into the evolution of immunity 
Briefings in Functional Genomics  2012;11(2):167-176.
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.
PMCID: PMC3310213  PMID: 22402506
innate immunity; Toll-like receptors; expanded immune repertoire; allelic complexity; gut immunity
8.  The impact of post-transcriptional regulation in the p53 network 
The p53 transcription factor regulates the synthesis of mRNAs encoding proteins involved in diverse cellular stress responses such as cell-cycle arrest, apoptosis, autophagy and senescence. In this review, we discuss how these mRNAs are concurrently regulated at the post-transcriptional level by microRNAs (miRNAs) and RNA-binding proteins (RBPs), which consequently modify the p53 transcriptional program in a cell type- and stimulus-specific manner. We also discuss the action of specific miRNAs and RBPs that are direct transcriptional targets of p53 and how they act coordinately with protein-coding p53 target genes to orchestrate p53-dependent cellular responses.
PMCID: PMC3548162  PMID: 23242178
p53; post-transcriptional regulation; RNA-binding proteins; miRNA
9.  Translational control by 3′-UTR-binding proteins 
The regulation of mRNA translation is a major checkpoint in the flux of information from the transcriptome to the proteome. Critical for translational control are the trans-acting factors, RNA-binding proteins (RBPs) and small RNAs that bind to the mRNA and modify its translatability. This review summarizes the mechanisms by which RBPs regulate mRNA translation, with special focus on those binding to the 3′-untranslated region. It also discusses how recent high-throughput technologies are revealing exquisite layers of complexity and are helping to untangle translational regulation at a genome-wide scale.
PMCID: PMC3548161  PMID: 23196851
RNA-binding protein; translation; UTR; RNP; CLIP; ribosome profiling
10.  MEK genomics in development and disease 
Briefings in Functional Genomics  2012;11(4):300-310.
The mitogen-activated protein kinase kinases (the MAPK/ERK kinases; MKKs or MEKs) and their downstream substrates, the extracellular-regulated kinases have been intensively studied for their roles in development and disease. Until recently, it had been assumed any mutation affecting their function would have lethal consequences. However, the identification of MEK1 and MEK2 mutations in developmental syndromes as well as chemotherapy-resistant tumors, and the discovery of genomic variants in MEK1 and MEK2 have led to the realization the extent of genomic variation associated with MEKs is much greater than had been appreciated. In this review, we will discuss these recent advances, relating them to what is currently understood about the structure and function of MEKs, and describe how they change our understanding of the role of MEKs in development and disease.
PMCID: PMC3398258  PMID: 22753777
MEK; MAPK; ERK; cardio-facial cutaneous syndrome; cancer; SNP
11.  Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs 
Briefings in Functional Genomics  2012;11(4):277-288.
Piwi-interacting RNAs (piRNAs) and CRISPR RNAs (crRNAs) are two recently discovered classes of small noncoding RNA that are found in animals and prokaryotes, respectively. Both of these novel RNA species function as components of adaptive immune systems that protect their hosts from foreign nucleic acids—piRNAs repress transposable elements in animal germlines, whereas crRNAs protect their bacterial hosts from phage and plasmids. The piRNA and CRISPR systems are nonhomologous but rather have independently evolved into logically similar defense mechanisms based on the specificity of targeting via nucleic acid base complementarity. Here we review what is known about the piRNA and CRISPR systems with a focus on comparing their evolutionary properties. In particular, we highlight the importance of several factors on the pattern of piRNA and CRISPR evolution, including the population genetic environment, the role of alternate defense systems and the mechanisms of acquisition of new piRNAs and CRISPRs.
PMCID: PMC3398257  PMID: 22539610
piRNA; CRISPR; co-evolution; transposable elements; phage; plasmids
12.  How much does the amphioxus genome represent the ancestor of chordates? 
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.
PMCID: PMC3310212  PMID: 22373648
deuterostomes; evolutionary rates; gene duplication; gene loss; orthology; synteny
13.  NGS technologies for analyzing germplasm diversity in genebanks* 
More than 70 years after the first ex situ genebanks have been established, major efforts in this field are still concerned with issues related to further completion of individual collections and securing of their storage. Attempts regarding valorization of ex situ collections for plant breeders have been hampered by the limited availability of phenotypic and genotypic information. With the advent of molecular marker technologies first efforts were made to fingerprint genebank accessions, albeit on a very small scale and mostly based on inadequate DNA marker systems. Advances in DNA sequencing technology and the development of high-throughput systems for multiparallel interrogation of thousands of single nucleotide polymorphisms (SNPs) now provide a suite of technological platforms facilitating the analysis of several hundred of Gigabases per day using state-of-the-art sequencing technology or, at the same time, of thousands of SNPs. The present review summarizes recent developments regarding the deployment of these technologies for the analysis of plant genetic resources, in order to identify patterns of genetic diversity, map quantitative traits and mine novel alleles from the vast amount of genetic resources maintained in genebanks around the world. It also refers to the various shortcomings and bottlenecks that need to be overcome to leverage the full potential of high-throughput DNA analysis for the targeted utilization of plant genetic resources.
PMCID: PMC3281264  PMID: 22257472
genetic resources; next-generation sequencing; SNP; allele mining; genetic diversity; association analysis

Results 1-13 (13)