PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  B6eGFPChAT mice overexpressing the vesicular acetylcholine transporter exhibit spontaneous hypoactivity and enhanced exploration in novel environments 
Brain and Behavior  2013;3(4):367-383.
Cholinergic innervation is extensive throughout the central and peripheral nervous systems. Among its many roles, the neurotransmitter acetylcholine (ACh) contributes to the regulation of motor function, locomotion, and exploration. Cholinergic deficits and replacement strategies have been investigated in neurodegenerative disorders, particularly in cases of Alzheimer's disease (AD). Focus has been on blocking acetylcholinesterase (AChE) and enhancing ACh synthesis to improve cholinergic neurotransmission. As a first step in evaluating the physiological effects of enhanced cholinergic function through the upregulation of the vesicular acetylcholine transporter (VAChT), we used the hypercholinergic B6eGFPChAT congenic mouse model that has been shown to contain multiple VAChT gene copies. Analysis of biochemical and behavioral paradigms suggest that modest increases in VAChT expression can have a significant effect on spontaneous locomotion, reaction to novel stimuli, and the adaptation to novel environments. These observations support the potential of VAChT as a therapeutic target to enhance cholinergic tone, thereby decreasing spontaneous hyperactivity and increasing exploration in novel environments.
doi:10.1002/brb3.139
PMCID: PMC3869679  PMID: 24381809
Choline acetyltransferase; cholinergic; eGFP-ChAT; exploration; locomotion; VAChT
2.  The cell adhesion molecule L1 regulates the expression of choline acetyltransferase and the development of septal cholinergic neurons 
Brain and Behavior  2011;1(2):73-86.
Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons.
doi:10.1002/brb3.15
PMCID: PMC3236547  PMID: 22399087
Caudate-putamen; cell adhesion molecule L1; choline acetyltransferase; cholinergic neurons; L1-deficient mice; medial septum; stereology; striatum; vertical limb of diagonal band of Broca

Results 1-2 (2)