PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (82)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Acquisition of internal models of motor tasks in children with autism 
Brain  2008;131(11):2894-2903.
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to improve performance on the next attempt. The cerebellum appears to be an important site for acquisition of internal models, and indeed the development of the cerebellum is abnormal in autism. Here, we examined autistic children on a range of tasks that required a change in the motor output in response to a change in the environment. We first considered a prism adaptation task in which the visual map of the environment was shifted. The children were asked to throw balls to visual targets with and without the prism goggles. We next considered a reaching task that required moving the handle of a novel tool (a robotic arm). The tool either imposed forces on the hand or displaced the cursor associated with the handle position. In all tasks, the children with autism adapted their motor output by forming a predictive internal model, as exhibited through after-effects. Surprisingly, the rates of acquisition and washout were indistinguishable from normally developing children. Therefore, the mechanisms of acquisition and adaptation of internal models in self-generated movements appeared normal in autism. Sparing of adaptation suggests that alternative mechanisms contribute to impaired motor skill development in autism. Furthermore, the findings may have therapeutic implications, highlighting a reliable mechanism by which children with autism can most effectively alter their behaviour.
doi:10.1093/brain/awn226
PMCID: PMC2577807  PMID: 18819989
reach adaptation; prism adaptation; motor control; autism
2.  Depression after status epilepticus: behavioural and biochemical deficits and effects of fluoxetine 
Brain  2008;131(8):2071-2083.
Depression represents one of the most common comorbidities in patients with epilepsy. However, the mechanisms of depression in epilepsy patients are poorly understood. Establishment of animal models of this comorbidity is critical for both understanding the mechanisms of the condition, and for preclinical development of effective therapies. The current study examined whether a commonly used animal model of temporal lobe epilepsy (TLE) is characterized by behavioural and biochemical alterations involved in depression. Male Wistar rats were subjected to LiCl and pilocarpine status epilepticus (SE). The development of chronic epileptic state was confirmed by the presence of spontaneous seizures and by enhanced brain excitability. Post-SE animals exhibited increase in immobility time under conditions of forced swim test (FST) which was indicative of despair-like state, and loss of taste preference in saccharin solution consumption test which pointed to the symptomatic equivalence of anhedonia. Biochemical studies revealed compromised serotonergic transmission in the raphe-hippocampal serotonergic pathway: decrease of serotonin (5-HT) concentration and turnover in the hippocampus, measured by high performance liquid chromatography, and decrease of 5-HT release from the hippocampus in response to raphe stimulation, measured by fast cyclic voltammetry. Administration of fluoxetine (FLX, 20 mg/kg/day for 10 days) to naive animals significantly shortened immobility time under conditions of FST, and inhibited 5-HT turnover in the hippocampus. In post-SE rats FLX treatment led to a further decrease of hippocampal 5-HT turnover; however, performance in FST was not improved. At the same time, FLX reversed SE-induced increase in brain excitability. In summary, our studies provide initial evidence that post-SE model of TLE might serve as a model of the comorbidity of epilepsy and depression. The finding that behavioural equivalents of depression were resistant to an antidepressant medication suggested that depression in epilepsy might have distinct underlying mechanisms beyond alterations in serotonergic pathways.
doi:10.1093/brain/awn117
PMCID: PMC2587254  PMID: 18559371
comorbidity; depression; epilepsy; hippocampus; serotonin
3.  Depression after status epilepticus: behavioral and biochemical deficits, and effects of fluoxetine 
Brain : a journal of neurology  2008;131(Pt 8):2071-2083.
Summary
Depression represents one of the most common comorbidities in patients with epilepsy. However, the mechanisms of depression in epilepsy patients are poorly understood. Establishment of animal models of this comorbidity is critical for both understanding the mechanisms of the condition, and for preclinical development of effective therapies. The current study examined whether a commonly used animal model of temporal lobe epilepsy (TLE) is characterized by behavioral and biochemical alterations involved in depression. Male Wistar rats were subjected to LiCl and pilocarpine status epilepticus (SE). The development of chronic epileptic state was confirmed by the presence of spontaneous seizures and by enhanced brain excitability. Post-SE animals exhibited increase in immobility time under conditions of forced swim test (FST) which was indicative of despair-like state, and loss of taste preference in saccharin solution consumption test which pointed to the symptomatic equivalence of anhedonia. Biochemical studies revealed compromised serotonergic transmission in the raphe-hippocampal serotonergic pathway: decrease of serotonin (5-HT) concentration and turnover in the hippocampus, measured by high performance liquid chromatography, and decrease of 5-HT release from the hippocampus in response to raphe stimulation, measured by fast cyclic voltammetry. Administration of fluoxetine (FLX, 20 mg/kg/day for 10 days) to naïve animals significantly shortened immobility time under conditions of FST, and inhibited 5-HT turnover in the hippocampus. In post-SE rats FLX treatment led to a further decrease of hippocampal 5-HT turnover; however, performance in FST was not improved. At the same time, FLX reversed SE-induced increase in brain excitability. In summary, our studies provide initial evidence that post-SE model of TLE might serve as a model of the comorbidity of epilepsy and depression. The finding that behavioral equivalents of depression were resistant to an antidepressant medication suggested that depression in epilepsy might have distinct underlying mechanisms beyond alterations in serotonergic pathways.
doi:10.1093/brain/awn117
PMCID: PMC2587254  PMID: 18559371
Comorbidity; depression; epilepsy; hippocampus; serotonin
4.  Acquisition of internal models of motor tasks in children with autism 
Brain : a journal of neurology  2008;131(Pt 11):2894-2903.
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use, and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to improve performance on the next attempt. The cerebellum appears to be an important site for acquisition of internal models, and indeed the development of the cerebellum is abnormal in autism. Here, we examined autistic children on a range of tasks that required a change in the motor output in response to a change in the environment. We first considered a prism adaptation task in which the visual map of the environment was shifted. The children were asked to throw balls to visual targets with and without the prism goggles. We next considered a reaching task that required moving the handle of a novel tool (a robotic arm). The tool either imposed forces on the hand or displaced the cursor associated with the handle position. In all tasks, the children with autism adapted their motor output by forming a predictive internal model, as exhibited through after-effects. Surprisingly, the rates of acquisition and washout were indistinguishable from normally developing children. Therefore, the mechanisms of acquisition and adaptation of internal models in self-generated movements appeared normal in autism. Sparing of adaptation suggests that alternative mechanisms contribute to impaired motor skill development in autism. Furthermore, the findings may have therapeutic implications, highlighting a reliable mechanism by which children with autism can most effectively alter their behavior.
doi:10.1093/brain/awn226
PMCID: PMC2577807  PMID: 18819989
reach adaptation; prism adaptation; motor control; autism
5.  Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis 
Brain : a journal of neurology  2008;131(0 4):1123-1133.
Inflammatory demyelinating plaques are the pathologic hallmark of active multiple sclerosis and often precede clinical manifestations. Noninvasive early detection of active plaques would thus be crucial in establishing presymptomatic diagnosis and could lead to early preventive treatment strategies. Using murine experimental autoimmune encephalomyelitis as a model of multiple sclerosis, we demonstrate that a prototype paramagnetic myeloperoxidase (MPO) sensor can detect and confirm more, smaller, and earlier active inflammatory lesions in living mice by in vivo magnetic resonance imaging (MRI). We show that MPO expression corresponded with areas of inflammatory cell infiltration and demyelination, and higher MPO activity as detected by MPO imaging, biochemical assays, and histopathological analyses correlated with increased clinical disease severity. Our findings present a potential new translational approach for specific noninvasive inflammatory plaque imaging. This approach could be used in longitudinal studies to identify active demyelinating plaques as well as to more accurately track disease course following treatment in clinical trials.
doi:10.1093/brain/awn004
PMCID: PMC4044727  PMID: 18234693
myeloperoxidase; neuroinflammation; demyelination; targeted imaging; MRI
6.  Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study 
Brain : a journal of neurology  2008;131(0 8):2042-2060.
Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD patients may help to understand the role of the lesion in epileptogenesis and also determine the potential surgical target.
doi:10.1093/brain/awn145
PMCID: PMC3792088  PMID: 18669486 CAMSID: cams3476
malformation of cortical development; EEG; functional MRI; epileptogenesis; seizure
7.  Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia 
Brain  2008;131(Pt 6):1609-1617.
The suprachiasmatic nuclei (SCN) are necessary and sufficient for the maintenance of circadian rhythms in primate and other mammalian species. The human dorsomedial SCN contains populations of non-species-specific vasopressin and species-specific neurotensin neurons. We made time-series recordings of core body temperature and locomotor activity in 19 elderly, male, end-stage dementia patients and 8 normal elderly controls. Following the death of the dementia patients, neuropathological diagnostic information and tissue samples from the hypothalamus were obtained. Hypothalamic tissue was also obtained from eight normal control cases that had not had activity or core temperature recordings previously. Core temperature was analysed for parametric, circadian features, and activity was analysed for non-parametric and parametric circadian features. These indices were then correlated with the degree of degeneration seen in the SCN (glia/neuron ratio) and neuronal counts from the dorsomedial SCN (vasopressin, neurotensin). Specific loss of SCN neurotensin neurons was associated with loss of activity and temperature amplitude without increase in activity fragmentation. Loss of SCN vasopressin neurons was associated with increased activity fragmentation but not loss of amplitude. Evidence for a circadian rhythm of vasopressinergic activity was seen in the dementia cases but no evidence was seen for a circadian rhythm in neurotensinergic activity. These results provide evidence that the SCN is necessary for the maintenance of the circadian rhythmin humans, information on the role of neuronal subpopulations in subserving this function and the utility of dementia in elaborating brain–behaviour relationships in the human.
doi:10.1093/brain/awn049
PMCID: PMC3286014  PMID: 18372313
circadian rhythm; Alzheimer’s disease; vasopressin; neurotensin; neurodegeneration
8.  Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology 
Brain  2008;132(7):1795-1809.
Parkinson's disease is caused by a progressive loss of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta. Although the main cause of Parkinson's disease remains unknown, there is increasing evidence that it is a complex disorder caused by a combination of genetic and environmental factors, which affect key signalling pathways in substantia nigra DA neurons. Insights into pathogenesis of Parkinson's disease stem from in vitro and in vivo models and from postmortem analyses. Recent technological developments have added a new dimension to this research by determining gene expression profiles using high throughput microarray assays. However, many of the studies reported to date were based on whole midbrain dissections, which included cells other than DA neurons. Here, we have used laser microdissection to isolate single DA neurons from the substantia nigra pars compacta of controls and subjects with idiopathic Parkinson's disease matched for age and postmortem interval followed by microarrays to analyse gene expression profiling. Our data confirm a dysregulation of several functional groups of genes involved in the Parkinson's disease pathogenesis. In particular, we found prominent down-regulation of members of the PARK gene family and dysregulation of multiple genes associated with programmed cell death and survival. In addition, genes for neurotransmitter and ion channel receptors were also deregulated, supporting the view that alterations in electrical activity might influence DA neuron function. Our data provide a ‘molecular fingerprint identity’ of late–stage Parkinson's disease DA neurons that will advance our understanding of the molecular pathology of this disease.
doi:10.1093/brain/awn323
PMCID: PMC2724914  PMID: 19052140
Parkinson's disease; microarray; laser microdissection; pathogenesis; dopamine
9.  Subcortical damage and white matter disconnection associated with non-fluent speech 
Brain  2008;132(6):e108.
doi:10.1093/brain/awn200
PMCID: PMC2857955  PMID: 18723562
10.  Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects 
Brain  2008;132(5):1310-1323.
Although β-amyloid (Aβ) plaques are a primary diagnostic criterion for Alzheimer's disease, this pathology is commonly observed in the brains of non-demented older individuals. To explore the importance of this pathology in the absence of dementia, we compared levels of amyloid deposition (via ‘Pittsburgh Compound-B’ (PIB) positron emission tomography (PET) imaging) to hippocampus volume (HV) and episodic memory (EM) in three groups: (i) normal controls (NC) from the Berkeley Aging Cohort (BAC NC, n = 20); (ii) normal controls (NC) from the Alzheimer's disease neuroimaging initiative (ADNI NC, n = 17); and (iii) PIB+ mild cognitive impairment subjects from the ADNI (ADNI PIB+ MCI, n = 39). Age, gender and education were controlled for in each statistical model, and HV was adjusted for intracranial volume (aHV). In BAC NC, elevated PIB uptake was significantly associated with smaller aHV (P = 0.0016) and worse EM (P = 0.0086). Within ADNI NC, elevated PIB uptake was significantly associated with smaller aHV (P = 0.047) but not EM (P = 0.60); within ADNI PIB+ MCI, elevated PIB uptake was significantly associated with both smaller aHV (P = 0.00070) and worse EM (P = 0.046). To further understand these relationships, a recursive regression procedure was conducted within all ADNI NC and PIB+ MCI subjects (n = 56) to test the hypothesis that HV mediates the relationship between Aβ and EM. Significant correlations were found between PIB index and EM (P = 0.0044), PIB index and aHV (P < 0.0001), as well as between aHV and EM (P < 0.0001). When both aHV and PIB were included in the same model to predict EM, aHV remained significant (P = 0.0015) whereas PIB index was no longer significantly associated with EM (P = 0.50). These results are consistent with a model in which Aβ deposition, hippocampal atrophy, and EM occur sequentially in elderly subjects, with Aβ deposition as the primary event in this cascade. This pattern suggests that declining EM in older individuals may be caused by Aβ-induced hippocampus atrophy.
doi:10.1093/brain/awn320
PMCID: PMC2677792  PMID: 19042931
Pittsburgh Compound-B; magnetic resonance imaging; β-amyloid; hippocampus; preclinical Alzheimer's disease
11.  REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31 
Brain : a journal of neurology  2008;131(Pt 4):1078-1086.
Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for REEP1 mutations and copy number variations. We identified 13 novel and 2 known REEP1 mutations in 16 familial and sporadic patients by direct sequencing analysis. Twelve out of 16 mutations were small insertions, deletions or splice site mutations. These changes would result in shifts of the open-reading-frame followed by premature termination of translation and haploinsufficiency. Interestingly, we identified two disease associated variations in the 3′-UTR of REEP1 that fell into highly conserved micro RNA binding sites. Copy number variation analysis in a subset of 133 HSP index patients revealed a large duplication of REEP1 that involved exons 2–7 in an Irish family. Clinically most SPG31 patients present with a pure spastic paraplegia; rare complicating features were restricted to symptoms or signs of peripheral nerve involvement. Interestingly, the distribution of age at onset suggested a bimodal pattern with the appearance of initial symptoms of disease either before the age of 20 years or after the age of 30 years. The overall mutation rate in our clinically heterogeneous sample was 3.0%; however, in the sub-sample of pure HSP REEP1 mutations accounted for 8.2% of all patients. These results firmly establish REEP1 as a relatively frequent autosomal dominant HSP gene for which genetic testing is warranted. We also establish haploinsufficiency as the main molecular genetic mechanism in SPG31, which should initiate and guide functional studies on REEP1 with a focus on loss-of-function mechanisms. Our results should be valid as a reference for mutation frequency, spectrum of REEP1 mutations, and clinical phenotypes associated with SPG31.
doi:10.1093/brain/awn026
PMCID: PMC2841798  PMID: 18321925
hereditary spastic paraplegia; SPG31; REEP1; haploinsufficiency; micro RNA
12.  Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors 
Brain  2008;132(3):778-787.
Descending input from the rostral ventromedial medulla (RVM) provides positive and negative modulation of spinal nociceptive transmission and has been proposed to be critical for maintaining neuropathic pain. This study tests the hypothesis that neuropathic pain requires the activity of a subset of RVM neurons that are distinguished by co-expression of mu opioid receptor (MOR) and cholecystokinin type 2 receptor (CCK2). Using male Sprague–Dawley rats, we demonstrate that discrete RVM neurons express MOR and CCK2; over 80% of these cells co-express both receptors. Agonist-directed cell lesion in the RVM with the cytotoxin, saporin, using either CCK-saporin to target CCK receptor expressing cells, or dermorphin-saporin to target MOR expressing cells, resulted in concomitant loss of CCK2 and MOR expressing cells, did not alter the basal sensory thresholds but abolished the hyperalgesia induced by microinjection of CCK into the RVM. The findings suggest that these CCK2-MOR co-expressing RVM neurons facilitate pain and can be directly activated by CCK input to the RVM. Furthermore, lesion of these RVM neurons did not affect the initial development of neuropathic pain in the hind paw upon injury to the sciatic nerve, but the abnormal pain states were short lived such that by about day 9 the sensory thresholds had reverted to pre-injury baselines despite the existing neuropathy. These data support our hypothesis and identify CCK2-MOR co-expressing neurons in the RVM as potential therapeutic targets for neuropathic pain.
doi:10.1093/brain/awn330
PMCID: PMC2724921  PMID: 19050032
opioid receptor; cholecystokinin receptor; neuropathy; rostral ventromedial medulla; nociception
13.  Walking flexibility after hemispherectomy: split-belt treadmill adaptation and feedback control 
Brain  2008;132(3):722-733.
Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill walking. In contrast, focal cerebral damage from stroke did not impair either process. This led to the suggestion that cerebellar interactions with the brainstem are more important than those with cerebral structures for feedforward adaptation. Does complete removal of a cerebral hemisphere affect either of these processes? We studied split-belt walking in 10 children and adolescents (age 6–18 years) with hemispherectomy (i.e. surgical removal of one entire cerebral hemisphere) and 10 age- and sex-matched control subjects. Hemispherectomy did not impair reactive feedback control, though feedforward adaptation was impaired in some subjects. Specifically, some showed reduced or absent adaptation of inter-leg timing, whereas adaptation of spatial control was intact. These results suggest that the cerebrum is involved in adaptation of the timing, but not spatial, elements of limb movements.
doi:10.1093/brain/awn333
PMCID: PMC2664447  PMID: 19074191
locomotion; children; motor learning
14.  Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1 
Brain  2008;132(2):452-464.
We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via the detection of reducing bodies in muscle biopsy sections stained with menadione-NBT followed by clinical, histological, ultrastructural and molecular genetic analysis. A total of 11 patients from nine families were included in this study, including seven sporadic patients with early childhood onset disease and four familial cases with later onset. Weakness in all patients was progressive, sometimes rapidly so. Respiratory failure was common and scoliosis and spinal rigidity were significant in some of the patients. Analysis of muscle biopsies confirmed the presence of aggregates of FHL1 positive material in all biopsies. In two patients in whom sequential biopsies were available the aggregate load in muscle sections appeared to increase over time. Ultrastructural analysis revealed that cytoplasmic bodies were regularly seen in conjunction with the reducing bodies. The mutations detected were exclusive to the second LIM domain of FHL1 and were found in both sporadic as well as familial cases of reducing body myopathy. Six of the nine mutations affected the crucial zinc coordinating residue histidine 123. All mutations in this residue were de novo and were associated with a severe clinical course, in particular in one male patient (H123Q). Mutations in the zinc coordinating residue cysteine 153 were associated with a milder phenotype and were seen in the familial cases in which the boys were still more severely affected compared to their mothers. We expect the mild end of the spectrum to significantly expand in the future. On the severe end of the spectrum we define reducing body myopathy as a progressive disease with early, but not necessarily congenital onset, distinguishing this condition from the classic essentially non-progressive congenital myopathies.
doi:10.1093/brain/awn325
PMCID: PMC2724920  PMID: 19181672
reducing body myopathy; FHL1; aggresomes; LIM; X-linked
15.  The influence of parental history of Alzheimer's disease and apolipoprotein E ε4 on the BOLD signal during recognition memory 
Brain  2008;132(2):383-391.
First-degree family history (FH) of sporadic Alzheimer's disease and the apolipoprotein E ε4 allele (APOE4) are risk factors for Alzheimer's disease that may affect brain function prior to onset of clinical symptoms. In this functional MRI (fMRI) study, we used an episodic recognition task that required discrimination of previously viewed (PV) and novel (NV) faces to examine differences in blood oxygen level dependent (BOLD) signal due to risk factors in 74 middle-aged cognitively normal individuals. The group effects on this recognition task were tested with a 2 × 2 ANCOVA factorial design (+FH/−FH and +APOE4/−APOE4). There were significant APOE4 and FH effects in the left dorsal posterior cingulate cortex and precuneus, where decreased risk resulted in greater activity during recollection. Recognition performance was positively correlated with BOLD signal in the left posterior hippocampus, parahippocampal–retrosplenial gyrus and left superior frontal cortex regardless of risk factors. To examine condition-specific group effects, both the PV and NV faces were tested further in separate 2 × 2 ANCOVAs. Both models revealed an APOE effect, with the −APOE4 group showing stronger signal than the +APOE4 group in anterior cingulate cortices, while a FH effect was found in the dorsal cuneus and medial frontal cortices with the −FH group showing stronger signal than the +FH group. Finally, interactions between APOE4 and FH effects were found bilaterally in the fusiform gyrus. These results suggest that risk factors and cognitive performance each influence brain activity during recognition. The findings lend further support to the idea that functional brain changes may begin far in advance of symptomatic Alzheimer's disease.
doi:10.1093/brain/awn254
PMCID: PMC2724919  PMID: 18829694
Alzheimer's disease; risk factors; BOLD; event-related fMRI; d-prime
16.  Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations 
Brain  2008;132(2):426-438.
Recessive mutations in GJA12/GJC2, the gene that encodes the gap junction protein connexin47 (Cx47), cause Pelizaeus-Merzbacher-like disease (PMLD), an early onset dysmyelinating disorder of the CNS, characterized by nystagmus, psychomotor delay, progressive spasticity and cerebellar signs. Here we describe three patients from one family with a novel recessively inherited mutation, 99C>G (predicted to cause an Ile>Met amino acid substitution; I33M) that causes a milder phenotype. All three had a late-onset, slowly progressive, complicated spastic paraplegia, with normal or near-normal psychomotor development, preserved walking capability through adulthood, and no nystagmus. MRI and MR spectroscopy imaging were consistent with a hypomyelinating leukoencephalopathy. The mutant protein forms gap junction plaques at cell borders similar to wild-type (WT) Cx47 in transfected cells, but fails to form functional homotypic channels in scrape-loading and dual whole-cell patch clamp assays. I33M forms overlapping gap junction plaques and functional channels with Cx43, however, I33M/Cx43 channels open only when a large voltage difference is applied to paired cells. These channels probably do not function under physiological conditions, suggesting that Cx47/Cx43 channels between astrocytes and oligodendrocytes are disrupted, similar to the loss-of-function endoplasmic reticulum-retained Cx47 mutants that cause PMLD. Thus, GJA12/GJC2 mutations can result in a milder phenotype than previously appreciated, but whether I33M retains a function of Cx47 not directly related to forming functional gap junction channels is not known.
doi:10.1093/brain/awn328
PMCID: PMC2640216  PMID: 19056803
spastic paraplegias; Pelizaeus-Merzbacher-like disease; gap junction; connexin; oligodendrocyte
17.  Limitations to plasticity of language network reorganization in localization related epilepsy 
Brain  2008;132(2):347-356.
Neural networks for processing language often are reorganized in patients with epilepsy. However, the extent and location of within and between hemisphere re-organization are not established. We studied 45 patients, all with a left hemisphere seizure focus (mean age 22.8, seizure onset 13.3), and 19 normal controls (mean age 24.8) with an fMRI word definition language paradigm to assess the location of language processing regions. Individual patient SPM maps were compared to the normal group in a voxel-wise comparison; a voxel was considered to be significant if its z-value exceeded ∣2∣. Subsequently, we used principal component analysis with hierarchical clustering of variance patterns from individual difference maps to identify four patient sub-groups. One did not differ from normal controls; one had increased left temporal activation on the margin of regions activated in controls; two others had recruitment in right inferior frontal gyrus, middle frontal gyrus and temporal cortex. Right hemisphere activation in these two groups occurred in homologues of left hemisphere regions that sustained task activation. Our study used novel data driven methods to find evidence for constraints on inter-hemispheric reorganization of language in recruitment of right homologues, and, in a subpopulation of patients, evidence for intra-hemispheric reorganization of language limited to the margins of typical left temporal regional activation. These methods may be applied to investigate both normal and pathological variance in other developmental disorders and cognitive domains.
doi:10.1093/brain/awn329
PMCID: PMC2640214  PMID: 19059978
fMRI; language; epilepsy
18.  Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia 
Brain  2008;132(2):417-425.
Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case–control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.
doi:10.1093/brain/awn248
PMCID: PMC2640212  PMID: 18829695
dopamine; D2 receptor; working memory; prefrontal cortex; striatum
19.  Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity 
Brain  2008;132(1):225-238.
Tourette syndrome (TS) is a developmental disorder characterized by unwanted, repetitive behaviours that manifest as stereotyped movements and vocalizations called ‘tics’. Operating under the hypothesis that the brain's control systems may be impaired in TS, we measured resting-state functional connectivity MRI (rs-fcMRI) between 39 previously defined putative control regions in 33 adolescents with TS. We were particularly interested in the effect of TS on two of the brain's task control networks—a fronto-parietal network likely involved in more rapid, adaptive online control, and a cingulo-opercular network apparently important for set-maintenance. To examine the relative maturity of connections in the Tourette subjects, functional connections that changed significantly over typical development were examined. Age curves were created for each functional connection charting correlation coefficients over age for 210 healthy people aged 7–31 years, and the TS group correlation coefficients were compared to these curves. Many of these connections were significantly less ‘mature’ than expected in the TS group. This immaturity was true not only for functional connections that grow stronger with age, but also for those that diminish in strength with age. To explore other differences between Tourette and typically developing subjects further, we performed a second analysis in which the TS group was directly compared to an age-matched, movement-matched group of typically developing, unaffected adolescents. A number of functional connections were found to differ between the two groups. For these identified connections, a large number of connectional differences were found where the TS group value was out of range compared to typical developmental age curves. These anomalous connections were primarily found in the fronto-parietal network, thought to be important for online adaptive control. These results suggest that in adolescents with TS, immature functional connectivity is widespread, with additional, more profound deviation of connectivity in regions related to adaptive online control.
doi:10.1093/brain/awn223
PMCID: PMC2638693  PMID: 18952678
Tourette syndrome; functional connectivity; attentional control; adolescence; cognitive development
20.  The neural basis of surface dyslexia in semantic dementia 
Brain  2008;132(1):71-86.
Semantic dementia (SD) is a neurodegenerative disease characterized by atrophy of anterior temporal regions and progressive loss of semantic memory. SD patients often present with surface dyslexia, a relatively selective impairment in reading low-frequency words with exceptional or atypical spelling-to-sound correspondences. Exception words are typically ‘over-regularized’ in SD and pronounced as they are spelled (e.g. ‘sew’ is pronounced as ‘sue’). This suggests that in the absence of sufficient item-specific knowledge, exception words are read by relying mainly on subword processes for regular mapping of orthography to phonology. In this study, we investigated the functional anatomy of surface dyslexia in SD using functional magnetic resonance imaging (fMRI) and studied its relationship to structural damage with voxel-based morphometry (VBM). Five SD patients and nine healthy age-matched controls were scanned while they read regular words, exception words and pseudowords in an event-related design. Vocal responses were recorded and revealed that all patients were impaired in reading low-frequency exception words, and made frequent over-regularization errors. Consistent with prior studies, fMRI data revealed that both groups activated a similar basic network of bilateral occipital, motor and premotor regions for reading single words. VBM showed that these regions were not significantly atrophied in SD. In control subjects, a region in the left intraparietal sulcus was activated for reading pseudowords and low-frequency regular words but not exception words, suggesting a role for this area in subword mapping from orthographic to phonological representations. In SD patients only, this inferior parietal region, which was not atrophied, was also activated by reading low-frequency exception words, especially on trials where over-regularization errors occurred. These results suggest that the left intraparietal sulcus is involved in subword reading processes that are differentially recruited in SD when word-specific information is lost. This loss is likely related to degeneration of the anterior temporal lobe, which was severely atrophied in SD. Consistent with this, left mid-fusiform and superior temporal regions that showed reading-related activations in controls were not activated in SD. Taken together, these results suggest that the left inferior parietal region subserves subword orthographic-to-phonological processes that are recruited for exception word reading when retrieval of exceptional, item-specific word forms is impaired by degeneration of the anterior temporal lobe.
doi:10.1093/brain/awn300
PMCID: PMC2638692  PMID: 19022856
semantic dementia; dyslexia; parietal lobe; voxel-based morphometry; functional MRI
21.  A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1β 
Brain  2008;131(12):3256-3265.
Interleukin-1β (IL-1β) is overproduced in human and rodent epileptogenic tissue and it exacerbates seizures upon brain application in rodents. Moreover, pharmacological prevention of IL-1β endogenous synthesis, or IL-1 receptor blockade, mediates powerful anticonvulsive actions indicating a significant role of this cytokine in ictogenesis. The molecular mechanisms of the proconvulsive actions of IL-1β are not known. We show here that EEG seizures induced by intrahippocampal injection of kainic acid in C57BL6 adult mice were increased by 2-fold on average by pre-exposure to IL-1β and this effect was blocked by 3-O-methylsphingomyelin (3-O-MS), a selective inhibitor of the ceramide-producing enzyme sphingomyelinase. C2-ceramide, a cell permeable analog of ceramide, mimicked IL-1β action suggesting that ceramide may be the second messenger of the proconvulsive effect of IL-1β. The seizure exacerbating effects of either IL-1β or C2-ceramide were dependent on activation of the Src family of tyrosine kinases since they were prevented by CGP76030, an inhibitor of this enzyme family. The proconvulsive IL-1β effect was associated with increased Tyr418 phosphorylation of Src-family of kinases indicative of its activation, and Tyr1472 phosphorylation of one of its substrate, the NR2B subunit of the N-methyl-d-aspartate receptor, which were prevented by 3-O-MS and CGP76030. Finally, the proconvulsive effect of IL-1β was blocked by ifenprodil, a selective NR2B receptor antagonist. These results indicate that the proconvulsive actions of IL-1β depend on the activation of a sphingomyelinase- and Src-family of kinases-dependent pathway in the hippocampus which leads to the phosphorylation of the NR2B subunit, thus highlighting a novel, non-transcriptional mechanism underlying seizure exacerbation in inflammatory conditions.
doi:10.1093/brain/awn271
PMCID: PMC2724908  PMID: 18952671
experimental epilepsy; glia activation; cytokines; NMDA receptor; inflammation
22.  Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia 
Brain  2008;131(12):3178-3192.
The superior temporal gyrus, which contains the auditory cortex, including the planum temporale, is the most consistently altered neocortical structure in schizophrenia (Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52). Auditory hallucinations are associated with abnormalities in this region and activation in Heschl's gyrus. Our review of 34 MRI and 5 post-mortem studies of planum temporale reveals that half of those measuring region size reported a change in schizophrenia, usually consistent with a reduction in the left hemisphere and a relative increase in the right hemisphere. Furthermore, female subjects are under-represented in the literature and insight from sex differences may be lost. Here we present evidence from post-mortem brain (N = 21 patients, compared with 17 previously reported controls) that normal age-associated changes in planum temporale are not found in schizophrenia. These age-associated differences are reported in an adult population (age range 29–90 years) and were not found in the primary auditory cortex of Heschl's gyrus, indicating that they are selective to the more plastic regions of association cortex involved in cognition. Areas and volumes of Heschl's gyrus and planum temporale and the separation of the minicolumns that are held to be the structural units of the cerebral cortex were assessed in patients. Minicolumn distribution in planum temporale and Heschl's gyrus was assessed on Nissl-stained sections by semi-automated microscope image analysis. The cortical surface area of planum temporale in the left hemisphere (usually asymmetrically larger) was positively correlated with its constituent minicolumn spacing in patients and controls. Surface area asymmetry of planum temporale was reduced in patients with schizophrenia by a reduction in the left hemisphere (F = 7.7, df 1,32, P < 0.01). The relationship between cortical asymmetry and the connecting, interhemispheric callosal white matter was also investigated; minicolumn asymmetry of both Heschl's gyrus and planum temporale was correlated with axon number in the wrong subregions of the corpus callosum in patients. The spacing of minicolumns was altered in a sex-dependent manner due to the absence of age-related minicolumn thinning in schizophrenia. This is interpreted as a failure of adult neuroplasticity that maintains neuropil space. The arrested capacity to absorb anomalous events and cognitive demands may confer vulnerability to schizophrenic symptoms when adult neuroplastic demands are not met.
doi:10.1093/brain/awn211
PMCID: PMC2724907  PMID: 18819990
auditory processing; neuroplasticity; cerebral asymmetry; corpus callosum; language processing; schizophrenia
23.  Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis 
Brain  2008;131(12):3335-3347.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 1–5 years after disease onset. Therapeutic options remain limited despite a substantial number of approaches that have been tested clinically. In particular, various neurotrophic factors have been investigated. Failure in these trials has been largely ascribed to problems of insufficient dosing or inability to cross the blood–brain barrier (BBB). We have recently uncovered the neurotrophic properties of the haematopoietic protein granulocyte-colony stimulating factor (G-CSF). The protein is clinically well tolerated and crosses the intact BBB. This study examined the potential role of G-CSF in motoneuron diseases. We investigated the expression of the G-CSF receptor in motoneurons and studied effects of G-CSF in a motoneuron cell line and in the SOD1(G93A) transgenic mouse model. The neurotrophic growth factor was applied both by continuous subcutaneous delivery and CNS-targeted transgenic overexpression. This study shows that given at the stage of the disease where muscle denervation is already evident, G-CSF leads to significant improvement in motor performance, delays the onset of severe motor impairment and prolongs overall survival of SOD1(G93A)tg mice. The G-CSF receptor is expressed by motoneurons and G-CSF protects cultured motoneuronal cells from apoptosis. In ALS mice, G-CSF increased survival of motoneurons and decreased muscular denervation atrophy. We conclude that G-CSF is a novel neurotrophic factor for motoneurons that is an attractive and feasible drug candidate for the treatment of ALS.
doi:10.1093/brain/awn243
PMCID: PMC2639207  PMID: 18835867
ALS; growth factor; drug candidate; functional outcome; motoneuron survival
24.  Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors 
Brain  2008;131(12):3239-3245.
Ictal hypoxemia has been reported in small series of cases and may contribute to sudden unexpected death in epilepsy (SUDEP). We sought to determine the incidence and severity of ictal hypoxemia in patients with localization-related epilepsy undergoing in-patient video-EEG telemetry. We examined whether seizure-associated oxygen desaturation was a consequence of hypoventilation and whether factors such as seizure localization and lateralization, seizure duration, contralateral spread of seizures, patient position at seizure onset and body mass index influenced ictal-related hypoxemia. A total of 304 seizures with accompanying oxygen saturation data were recorded in 56 consecutive patients with intractable localization-related epilepsy; 51 of 304 seizures progressed to generalized convulsions. Pulse oximetry showed oxygen desaturations below 90% in 101 (33.2%) of all seizures with or without secondary generalization, with 31 (10.2%) seizures accompanied by desaturations below 80% and 11 (3.6%) seizures below 70%. The mean duration of desaturation below 90% was 69.2 ± 65.2 s (47; 6–327). The mean oxygen saturation nadir following secondary generalization was 75.4% ± 11.4% (77%; 42–100%). Desaturations below 90% were significantly correlated with seizure localization [P = 0.005; odds ratio (OR) of temporal versus extratemporal = 5.202; 95% CI = (1.665, 16.257)], seizure lateralization [P = 0.001; OR of right versus left = 2.098; 95% CI = (1.078, 4.085)], contralateral spread of seizures [P = 0.028; OR of contralateral spread versus no spread = 2.591; 95% CI = (1.112, 6.039)] and gender [P = 0.048; OR of female versus male = 0.422; 95% CI = (0.179, 0.994)]. In the subset of 253 partial seizures without secondary generalized convulsions, 34.8% of seizures had desaturations below 90%, 31.8% had desaturations below 80% and 12.5% had desaturations below 70%. The degree of desaturation was significantly correlated with seizure duration (P = 0.001) and with electrographic evidence of seizure spread to the contralateral hemisphere (P = 0.003). Central apnoeas or hypopnoeas occurred with 50% of 100 seizures. Mixed or obstructive apnoeas occurred with 9% of these seizures. End-tidal carbon dioxide (ETCO2) was recorded in seven patients (19 seizures). The mean increase in ETCO2 from preictal baseline was 18.6 ± 17.7 mm Hg (13.2; 2.8–77.8). In these 19 seizures, all oxygen desaturations below 85% were accompanied by an increase in ETCO2. Ictal hypoxemia occurs often in patients with localization-related epilepsy and may be pronounced and prolonged; even with seizures that do not progress to generalized convulsions. Oxygen desaturations are accompanied by increases in ETCO2, supporting the assumption that ictal oxygen desaturation is a consequence of hypoventilation. Ictal hypoxemia and hypercapnia may contribute to SUDEP.
doi:10.1093/brain/awn277
PMCID: PMC2639205  PMID: 18952672
partial seizures; hypoxemia; hypercapnia; SUDEP; epilepsy
25.  Bilateral subthalamic stimulation impairs cognitive–motor performance in Parkinson's disease patients 
Brain  2008;131(12):3348-3360.
Deep brain stimulation (DBS) is a surgical procedure that has been shown effective in improving the cardinal motor signs of advanced Parkinson's disease, however, declines in cognitive function have been associated with bilateral subthalamic nucleus (STN) DBS. Despite the fact that most activities of daily living clearly have motor and cognitive components performed simultaneously, postoperative assessments of cognitive and motor function occur, in general, in isolation of one another. The primary aim of this study was to determine the effects of unilateral and bilateral STN DBS on upper extremity motor function and cognitive performance under single- and dual-task conditions in advanced Parkinson's disease patients. Data were collected from eight advanced Parkinson's disease patients between the ages of 48 and 70 years (mean 56.5) who had bilaterally placed STN stimulators. Stimulation parameters for DBS devices were optimized clinically and were stable for at least 6 months prior to study participation. Data were collected while patients were Off anti-parkinsonian medications under three stimulation conditions: Off stimulation, unilateral DBS and bilateral DBS. In each stimulation condition patients performed a cognitive (n-back task) and motor (force tracking) task under single- and dual-task conditions. During dual-task conditions, patients performed the n-back and force-maintenance task simultaneously. Under relatively simple dual-task conditions there were no differences in cognitive or motor performance under unilateral and bilateral stimulation. As dual-task complexity increased, cognitive and motor performance was significantly worse with bilateral compared with unilateral stimulation. In the most complex dual-task condition (i.e. 2-back + force tracking), bilateral stimulation resulted in a level of motor performance that was similar to the Off stimulation condition. Significant declines in cognitive and motor function under modest dual-task conditions with bilateral but not with unilateral STN DBS suggest that unilateral procedures may be an alternative to bilateral DBS for some patients, in particular, those with asymmetric symptomology. From a clinical perspective, these results underscore the need to assess cognitive and motor function simultaneously during DBS programming as these conditions may better reflect the context in which daily activities are performed.
doi:10.1093/brain/awn238
PMCID: PMC2639204  PMID: 18842609
Parkinson's disease; deep brain stimulation; force control; cognitive function; dual-task

Results 1-25 (82)