PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (122)
 

Clipboard (0)
None
Journals
Year of Publication
1.  High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type 
Brain : a journal of neurology  2009;132(0 4):1022-1037.
High frequency oscillations (HFOs) called ripples (80–250 Hz) and fast ripples (FR, 250–500 Hz) can be recorded from intracerebral EEG macroelectrodes in patients with intractable epilepsy. HFOs occur predominantly in the seizure onset zone (SOZ) but their relationship to the underlying pathology is unknown. It was the aim of this study to investigate whether HFOs are specific to the SOZ or result from pathologically changed tissue, whether or not it is epileptogenic. Patients with different lesion types, namely mesial temporal atrophy (MTA), focal cortical dysplasia (FCD) and nodular heterotopias (NH) were investigated. Intracranial EEG was recorded from depth macroelectrodes with a sampling rate of 2000 Hz. Ripples (80–250 Hz) and Fast Ripples (250–500 Hz) were visually marked in 12 patients: five with MTA, four with FCD and three with NH. Rates of events were statistically compared in channels in four areas: lesional SOZ, non-lesional SOZ, lesional non-SOZ and non-lesional non-SOZ. HFO rates were clearly more linked to the SOZ than to the lesion. They were highest in areas in which lesion and SOZ overlap, but in patients with a SOZ outside the lesion, such as in NHs, HFO rates were clearly higher in the non-lesional SOZ than in the inactive lesions. No specific HFO pattern could be identified for the different lesion types. The findings suggest that HFOs represent a marker for SOZ areas independent of the underlying pathology and that pathologic tissue changes alone do not lead to high rates of HFOs.
doi:10.1093/brain/awn351
PMCID: PMC3792079  PMID: 19297507 CAMSID: cams3471
high frequency oscillations; focal cortical dysplasia; nodular heterotopia; temporal atrophy; seizure onset zone; intracranial EEG
2.  Mitochondrial changes within axons in multiple sclerosis 
Brain : a journal of neurology  2009;132(Pt 5):1161-1174.
Summary
Multiple sclerosis is the most common cause of non-traumatic neurological impairment in young adults. An energy deficient state has been implicated in the degeneration of axons, the pathological correlate of disease progression, in multiple sclerosis. Mitochondria are the most efficient producers of energy and play an important role in calcium homeostasis. We analysed the density and function of mitochondria using immunohistochemistry and histochemistry, respectively, in chronic active and inactive lesions in progressive multiple sclerosis. As shown before in acute pattern III and Balo’s lesions, the mitochondrial respiratory chain complex IV activity is reduced despite the presence of mitochondria in demyelinated axons with amyloid precursor protein accumulation, which are predominantly located at the active edge of chronic active lesions. Furthermore, the strong non-phosphorylated neurofilament (SMI32) reactivity was associated with a significant reduction in complex IV activity and mitochondria within demyelinated axons. The complex IV defect associated with axonal injury may be mediated by soluble products of innate immunity, as suggested by an inverse correlation between complex IV activity and macrophage/microglial density in chronic lesions. However, in inactive areas of chronic multiple sclerosis lesions the mitochondrial respiratory chain complex IV activity and mitochondrial mass, judged by porin immunoreactivity, are increased within approximately half of large (>2.5 μm diameter) chronically demyelinated axons compared with large myelinated axons in the brain and spinal cord. The axon-specific mitochondrial docking protein (syntaphilin) and phosphorylated neurofilament-H were increased in chronic lesions. The lack of complex IV activity in a proportion of Na+/K+ ATPase α-1 positive demyelinated axons supports axonal dysfunction as a contributor to neurological impairment and disease progression. Furthermore, in vitro studies show that inhibition of complex IV augments glutamate-mediated axonal injury (amyloid precursor protein and SMI32 reactivity). Our findings have important implications for both axonal degeneration and dysfunction during the progressive stage of multiple sclerosis.
doi:10.1093/brain/awp046
PMCID: PMC3605917  PMID: 19293237
Mitochondria; axonal degeneration; multiple sclerosis
3.  Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study 
Brain : a journal of neurology  2009;132(Pt 5):1376-1385.
Pathological gambling is an impulse control disorder reported in association with dopamine agonists used to treat Parkinson’s disease. Although impulse control disorders are conceptualized as lying within the spectrum of addictions, little neurobiological evidence exists to support this belief. Functional imaging studies have consistently demonstrated abnormalities of dopaminergic function in patients with drug addictions, but to date no study has specifically evaluated dopaminergic function in Parkinson’s disease patients with impulse control disorders. We describe results of a [11C] raclopride positron emission tomography (PET) study comparing dopaminergic function during gambling in Parkinson’s disease patients, with and without pathological gambling, following dopamine agonists. Patients with pathological gambling demonstrated greater decreases in binding potential in the ventral striatum during gambling (13.9%) than control patients (8.1%), likely reflecting greater dopaminergic release. Ventral striatal bindings at baseline during control task were also lower in patients with pathological gambling. Although prior imaging studies suggest that abnormality in dopaminergic binding and dopamine release may be markers of vulnerability to addiction, this study presents the first evidence of these phenomena in pathological gambling. The emergence of pathological gambling in a number of Parkinson’s disease patients may provide a model into the pathophysiology of this disorder.
doi:10.1093/brain/awp054
PMCID: PMC3479148  PMID: 19346328 CAMSID: cams2369
Parkinson’s disease; dopamine; impulse control disorders; pathological gambling; PET; functional imaging
4.  Mild cognitive impairment associated with limbic and neocortical lewy body disease: a clinicopathological study 
Brain  2009;133(2):540-556.
There are little data on the relationship between Lewy body disease and mild cognitive impairment syndromes. The Mayo Clinic aging and dementia databases in Rochester, Minnesota, and Jacksonville, Florida were queried for cases who were diagnosed with mild cognitive impairment between 1 January 1996 and 30 April 2008, were prospectively followed and were subsequently found to have autopsy-proven Lewy body disease. The presence of rapid eye movement sleep behaviour disorder was specifically assessed. Mild cognitive impairment subtypes were determined by clinical impression and neuropsychological profiles, based on prospective operational criteria. The diagnosis of clinically probable dementia with Lewy bodies was based on the 2005 McKeith criteria. Hippocampal volumes, rate of hippocampal atrophy, and proton magnetic resonance spectroscopy were assessed on available magnetic resonance imaging and spectroscopy scans. Eight subjects were identified; six were male. Seven developed dementia with Lewy bodies prior to death; one died characterized as mild cognitive impairment. The number of cases and median age of onset (range) for specific features were: seven with rapid eye movement sleep behaviour disorder—60 years (27–91 years), eight with cognitive symptoms—69 years (62–89 years), eight with mild cognitive impairment—70.5 years (66–91 years), eight with parkinsonism symptoms—71 years (66–92 years), six with visual hallucinations—72 years (64–90 years), seven with dementia—75 years (67–92 years), six with fluctuations in cognition and/or arousal—76 years (68–92 years) and eight dead—76 years (71–94 years). Rapid eye movement sleep behaviour disorder preceded cognitive symptom onset in six cases by a median of 10 years (2–47 years) and mild cognitive impairment diagnosis by a median of 12 years (3–48 years). The mild cognitive impairment subtypes represented include: two with single domain non-amnestic mild cognitive impairment, three with multi-domain non-amnestic mild cognitive impairment, and three with multi-domain amnestic mild cognitive impairment. The cognitive domains most frequently affected were attention and executive functioning, and visuospatial functioning. Hippocampal volumes and the rate of hippocampal atrophy were, on average, within the normal range in the three cases who underwent magnetic resonance imaging, and the choline/creatine ratio was elevated in the two cases who underwent proton magnetic resonance spectroscopy when they were diagnosed as mild cognitive impairment. On autopsy, six had neocortical-predominant Lewy body disease and two had limbic-predominant Lewy body disease; only one had coexisting high-likelihood Alzheimer's disease. These findings indicate that among Lewy body disease cases that pass through a mild cognitive impairment stage, any cognitive pattern or mild cognitive subtype is possible, with the attention/executive and visuospatial domains most frequently impaired. Hippocampal volume and proton magnetic resonance spectroscopy data were consistent with recent data in dementia with Lewy bodies. All cases with rapid eye movement sleep behaviour disorder and mild cognitive impairment were eventually shown to have autopsy-proven Lewy body disease, indicating that rapid eye movement sleep behaviour disorder plus mild cognitive impairment probably reflects brainstem and cerebral Lewy body disease.
doi:10.1093/brain/awp280
PMCID: PMC2822633  PMID: 19889717
mild cognitive impairment; dementia; dementia with Lewy bodies; Lewy body disease; neuropathology
5.  The psychophysics of visual motion and global form processing in autism 
Brain  2009;133(2):599-610.
Several groups have recently reported that people with autism may suffer from a deficit in visual motion processing and proposed that these deficits may be related to a general dorsal stream dysfunction. In order to test the dorsal stream deficit hypothesis, we investigated coherent and biological motion perception as well as coherent form perception in a group of adolescents with autism and a group of age-matched typically developing controls. If the dorsal stream hypothesis were true, we would expect to document deficits in both coherent and biological motion processing in this group but find no deficit in coherent form perception. Using the method of constant stimuli and standard psychophysical analysis techniques, we measured thresholds for coherent motion, biological motion and coherent form. We found that adolescents with autism showed reduced sensitivity to both coherent and biological motion but performed as well as age-matched controls during coherent form perception. Correlations between intelligence quotient and task performance, however, appear to drive much of the group difference in coherent motion perception. Differences between groups on coherent motion perception did not remain significant when intelligence quotient was controlled for, but group differences in biological motion perception were more robust, remaining significant even when intelligence quotient differences were accounted for. Additionally, aspects of task performance on the biological motion perception task were related to autism symptomatology. These results do not support a general dorsal stream dysfunction in adolescents with autism but provide evidence of a more complex impairment in higher-level dynamic attentional processes.
doi:10.1093/brain/awp272
PMCID: PMC2858014  PMID: 19887505
autism; visual motion; biological motion; coherent motion; dorsal stream
6.  Posterior cingulate hypometabolism in early Alzheimer's disease: what is the contribution of local atrophy versus disconnection? 
Brain  2009;132(Pt 12):e133; author reply e134.
doi:10.1093/brain/awp253
PMCID: PMC3021534  PMID: 19858081
Alzheimer Disease; metabolism; physiopathology; radionuclide imaging; Atrophy; metabolism; physiopathology; radionuclide imaging; Biological Markers; analysis; metabolism; Early Diagnosis; Energy Metabolism; physiology; Fluorodeoxyglucose F18; diagnostic use; Gyrus Cinguli; metabolism; physiopathology; radionuclide imaging; Humans; Neural Pathways; metabolism; physiopathology; radionuclide imaging; Positron-Emission Tomography; methods; Predictive Value of Tests
7.  Language networks in semantic dementia 
Brain  2009;133(1):286-299.
Cognitive deficits in semantic dementia have been attributed to anterior temporal lobe grey matter damage; however, key aspects of the syndrome could be due to altered anatomical connectivity between language pathways involving the temporal lobe. The aim of this study was to investigate the left language-related cerebral pathways in semantic dementia using diffusion tensor imaging-based tractography and to combine the findings with cortical anatomical and functional magnetic resonance imaging data obtained during a reading activation task. The left inferior longitudinal fasciculus, arcuate fasciculus and fronto-parietal superior longitudinal fasciculus were tracked in five semantic dementia patients and eight healthy controls. The left uncinate fasciculus and the genu and splenium of the corpus callosum were also obtained for comparison with previous studies. From each tract, mean diffusivity, fractional anisotropy, as well as parallel and transverse diffusivities were obtained. Diffusion tensor imaging results were related to grey and white matter atrophy volume assessed by voxel-based morphometry and functional magnetic resonance imaging activations during a reading task. Semantic dementia patients had significantly higher mean diffusivity, parallel and transverse in the inferior longitudinal fasciculus. The arcuate and uncinate fasciculi demonstrated significantly higher mean diffusivity, parallel and transverse and significantly lower fractional anisotropy. The fronto-parietal superior longitudinal fasciculus was relatively spared, with a significant difference observed for transverse diffusivity and fractional anisotropy, only. In the corpus callosum, the genu showed lower fractional anisotropy compared with controls, while no difference was found in the splenium. The left parietal cortex did not show significant volume changes on voxel-based morphometry and demonstrated normal functional magnetic resonance imaging activation in response to reading items that stress sublexical phonological processing. This study shows that semantic dementia is associated with anatomical damage to the major superior and inferior temporal white matter connections of the left hemisphere likely involved in semantic and lexical processes, with relative sparing of the fronto-parietal superior longitudinal fasciculus. Fronto-parietal regions connected by this tract were activated normally in the same patients during sublexical reading. These findings contribute to our understanding of the anatomical changes that occur in semantic dementia, and may further help to explain the dissociation between marked single-word and object knowledge deficits, but sparing of phonology and fluency in semantic dementia.
doi:10.1093/brain/awp233
PMCID: PMC2801321  PMID: 19759202
semantic dementia; semantic knowledge; diffusion tensor-based tractography; functional MRI; voxel-based morphometry
8.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies 
Brain  2009;133(1):23-32.
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8–13.2; χ2 = 26.7; 1 degree of freedom; P = 2.4 × 10−7). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8–13.2; P = 4.2 × 10−4) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3–74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
doi:10.1093/brain/awp262
PMCID: PMC2801323  PMID: 19843651
idiopathic generalized epilepsy; microdeletions; association; genetics
9.  The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment 
Brain  2009;133(1):9-22.
The non-dystrophic myotonias are an important group of skeletal muscle channelopathies electrophysiologically characterized by altered membrane excitability. Many distinct clinical phenotypes are now recognized and range in severity from severe neonatal myotonia with respiratory compromise through to milder late-onset myotonic muscle stiffness. Specific genetic mutations in the major skeletal muscle voltage gated chloride channel gene and in the voltage gated sodium channel gene are causative in most patients. Recent work has allowed more precise correlations between the genotype and the electrophysiological and clinical phenotype. The majority of patients with myotonia have either a primary or secondary loss of membrane chloride conductance predicted to result in reduction of the resting membrane potential. Causative mutations in the sodium channel gene result in an abnormal gain of sodium channel function that may show marked temperature dependence. Despite significant advances in the clinical, genetic and molecular pathophysiological understanding of these disorders, which we review here, there are important unresolved issues we address: (i) recent work suggests that specialized clinical neurophysiology can identify channel specific patterns and aid genetic diagnosis in many cases however, it is not yet clear if such techniques can be refined to predict the causative gene in all cases or even predict the precise genotype; (ii) although clinical experience indicates these patients can have significant progressive morbidity, the detailed natural history and determinants of morbidity have not been specifically studied in a prospective fashion; (iii) some patients develop myopathy, but its frequency, severity and possible response to treatment remains undetermined, furthermore, the pathophysiogical link between ion channel dysfunction and muscle degeneration is unknown; (iv) there is currently insufficient clinical trial evidence to recommend a standard treatment. Limited data suggest that sodium channel blocking agents have some efficacy. However, establishing the effectiveness of a therapy requires completion of multi-centre randomized controlled trials employing accurate outcome measures including reliable quantitation of myotonia. More specific pharmacological approaches are required and could include those which might preferentially reduce persistent muscle sodium currents or enhance the conductance of mutant chloride channels. Alternative strategies may be directed at preventing premature mutant channel degradation or correcting the mis-targeting of the mutant channels.
doi:10.1093/brain/awp294
PMCID: PMC2801326  PMID: 19917643
ion channels; neuromuscular; genetics; EMG
10.  Enhanced frontal function in Parkinson’s disease 
Brain  2009;133(1):225-233.
We investigated the role of dopamine in working memory by examining effects of withdrawing dopaminergic medication in patients with Parkinson’s disease. Resistance to distraction during a delayed response task was abnormally enhanced in Parkinson’s disease patients OFF medication relative to controls. Conversely, performance on a backward digit span test was impaired in these same Parkinson’s disease patients OFF medication. Dopaminergic medication reinstated susceptibility to distraction and backward digit span performance, so that performance of Parkinson’s disease patients ON medication did not differ from that of controls. We hypothesize that the enhanced distractor resistance and impaired backward digit span in Parkinson’s disease reflects low dopamine levels in the striatum, and perhaps upregulated frontal dopamine levels. Dopaminergic medication may reinstate distractibility by normalizing the balance between striatal and prefrontal dopamine transmission.
doi:10.1093/brain/awp301
PMCID: PMC2801327  PMID: 19995871
working memory; cognitive deficits; dopamine; Parkinson’s disease; basal ganglia
11.  Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury 
Brain  2009;133(1):126-138.
Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-κB and expression of tumour necrosis factor-α. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.
doi:10.1093/brain/awp304
PMCID: PMC2801328  PMID: 20047904
spinal cord injury; neuroinflammation; wound healing; neutrophil; astrocytes; macrophage
12.  Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients 
Brain  2009;133(1):161-171.
The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology.
doi:10.1093/brain/awp313
PMCID: PMC2801329  PMID: 20034928
Default mode; fMRI; coma; vegetative state; minimally conscious state
13.  Effects of baclofen on motor units paralysed by chronic cervical spinal cord injury 
Brain  2009;133(1):117-125.
Baclofen, a gamma-aminobutyric acid receptorB agonist, is used to reduce symptoms of spasticity (hyperreflexia, increases in muscle tone, involuntary muscle activity), but the long-term effects of sustained baclofen use on skeletal muscle properties are unclear. The aim of our study was to evaluate whether baclofen use and paralysis due to cervical spinal cord injury change the contractile properties of human thenar motor units more than paralysis alone. Evoked electromyographic activity and force were recorded in response to intraneural stimulation of single motor axons to thenar motor units. Data from three groups of motor units were compared: 23 paralysed units from spinal cord injured subjects who take baclofen and have done so for a median of 7 years, 25 paralysed units from spinal cord injured subjects who do not take baclofen (median: 10 years) and 45 units from uninjured control subjects. Paralysed motor unit properties were independent of injury duration and level. With paralysis and baclofen, the median motor unit tetanic forces were significantly weaker, twitch half-relaxation times longer and half maximal forces reached at lower frequencies than for units from uninjured subjects. The median values for these same parameters after paralysis alone were comparable to control data. Axon conduction velocities differed across groups and were slowest for paralysed units from subjects who were not taking baclofen and fastest for units from the uninjured. Greater motor unit weakness with long-term baclofen use and paralysis will make the whole muscle weaker and more fatigable. Significantly more paralysed motor units need to be excited during patterned electrical stimulation to produce any given force over time. The short-term benefits of baclofen on spasticity (e.g. management of muscle spasms that may otherwise hinder movement or social interactions) therefore have to be considered in relation to its possible long-term effects on muscle rehabilitation. Restoring the strength and speed of paralysed muscles to pre-injury levels may require more extensive therapy when baclofen is used chronically.
doi:10.1093/brain/awp285
PMCID: PMC2857957  PMID: 19903733
baclofen; spinal cord injury; muscle paralysis; muscle weakness; axon conduction velocity; intraneural motor axon stimulation
14.  ABNORMAL SENSORIMOTOR PLASTICITY IN ORGANIC BUT NOT IN PSYCHOGENIC DYSTONIA 
Brain : a journal of neurology  2009;132(Pt 10):2871-2877.
Dystonia is characterised by two main pathophysiological abnormalities: reduced excitability of inhibitory systems at many levels of the sensorimotor system, and increased plasticity of neural connections in sensorimotor circuits at a brainstem and spinal level. A surprising finding in two recent papers has been the fact that abnormalities of inhibition similar to those in organic dystonia are also seen in patients who have psychogenic dystonia. To try to determine the critical feature that might separate organic and psychogenic conditions, we investigated cortical plasticity in a group of 10 patients with psychogenic dystonia and compared the results with those obtained in a matched group of 10 patients with organic dystonia and 10 healthy individuals. We confirmed the presence of abnormal motor cortical inhibition (short interval intracortical inhibition, SICI) in both organic and psychogenic groups. However, we found that plasticity (paired associative stimulation, PAS) was abnormally high only in the organic group, while there was no difference between the plasticity measured in psychogenic patients and healthy controls. We conclude that abnormal plasticity is a hallmark of organic dystonia; furthermore it is not a consequence of reduced inhibition since the latter is seen in psychogenic patients who have normal plasticity.
doi:10.1093/brain/awp213
PMCID: PMC2997979  PMID: 19690095
associative plasticity; organic dystonia; psychogenic dystonia; paired associative stimulation; transcranial magnetic stimulation
15.  Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load 
Brain  2009;132(12):3366-3379.
White matter tracts, which play a crucial role in the coordination of information flow between different regions of grey matter, are particularly vulnerable to multiple sclerosis. Many studies have shown that the white matter lesions in multiple sclerosis are associated with focal abnormalities of grey matter, but little is known about the alterations in the coordinated patterns of cortical morphology among regions in the disease. Here, we used cortical thickness measurements from structural magnetic resonance imaging to investigate the relationship between the white matter lesion load and the topological efficiency of structural cortical networks in multiple sclerosis. Network efficiency was defined using a ‘small-world’ network model that quantifies the effectiveness of information transfer within brain networks. In this study, we first classified patients (n = 330) into six subgroups according to their total white matter lesion loads, and identified structural brain networks for each multiple sclerosis group by thresholding the corresponding inter-regional cortical thickness correlation matrix, followed by a network efficiency analysis with graph theoretical approaches. The structural cortical networks in multiple sclerosis demonstrated efficient small-world architecture regardless of the lesion load, an organization that maximizes the information processing at a relatively low wiring cost. However, we found that the overall small-world network efficiency in multiple sclerosis was significantly disrupted in a manner proportional to the extent of total white matter lesions. Moreover, regional efficiency was also significantly decreased in specific brain regions, including the insula and precentral gyrus as well as regions of prefrontal and temporal association cortices. Finally, we showed that the lesions also altered many cortical thickness correlations in the frontal, temporal and parietal lobes. Our results suggest that the white matter lesions in multiple sclerosis might be associated with aberrant neuronal connectivity among widely distributed brain regions, and provide structural (morphological) evidence for the notion of multiple sclerosis as a disconnection syndrome.
doi:10.1093/brain/awp089
PMCID: PMC2792366  PMID: 19439423
cortical thickness; connectivity; MRI; multiple sclerosis; small-world networks
16.  Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain 
Brain  2009;132(12):3318-3328.
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) that is thought to be caused by a combination of genetic and environmental factors. To date, considerable evidence has associated Epstein–Barr virus (EBV) infection with disease development. However, it remains controversial whether EBV infects multiple sclerosis brain and contributes directly to CNS immunopathology. To assess whether EBV infection is a characteristic feature of multiple sclerosis brain, a large cohort of multiple sclerosis specimens containing white matter lesions (nine adult and three paediatric cases) with a heterogeneous B cell infiltrate and a second cohort of multiple sclerosis specimens (12 cases) that included B cell infiltration within the meninges and parenchymal B cell aggregates, were examined for EBV infection using multiple methodologies including in situ hybridization, immunohistochemistry and two independent real-time polymerase chain reaction (PCR) methodologies that detect genomic EBV or the abundant EBV encoded RNA (EBER) 1, respectively. We report that EBV could not be detected in any of the multiple sclerosis specimens containing white matter lesions by any of the methods employed, yet EBV was readily detectable in multiple Epstein–Barr virus-positive control tissues including several CNS lymphomas. Furthermore, EBV was not detected in our second cohort of multiple sclerosis specimens by in situ hybridization. However, our real-time PCR methodologies, which were capable of detecting very few EBV infected cells, detected EBV at low levels in only 2 of the 12 multiple sclerosis meningeal specimens examined. Our finding that CNS EBV infection was rare in multiple sclerosis brain indicates that EBV infection is unlikely to contribute directly to multiple sclerosis brain pathology in the vast majority of cases.
doi:10.1093/brain/awp200
PMCID: PMC2792367  PMID: 19638446
B cells; Epstein–Barr virus; multiple sclerosis brain
17.  Notch-1 signalling is activated in brain arteriovenous malformations in humans 
Brain  2009;132(12):3231-3241.
A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that, compared with control brain vascular tissue, Notch-1 signalling was activated in smooth muscle and endothelial cells of the lesional tissue. Western blotting showed an activated form of Notch-1 in brain arteriovenous malformations, irrespective of clinical presentation and with or without preoperative embolization, but not in normal cerebral vessels from controls. In addition, the Notch-1 ligands Jagged-1 and Delta-like-4 and the downstream Notch-1 target Hes-1 were increased in abundance and activated in human brain arteriovenous malformations. Finally, increased angiogenesis was found in adult rats treated with a Notch-1 activator. Our findings suggest that activation of Notch-1 signalling is a phenotypic feature of brain arteriovenous malformations, and that activation of Notch-1 in normal vasculature induces a pro-angiogenic state, which may contribute to the development of vascular malformations.
doi:10.1093/brain/awp246
PMCID: PMC2792368  PMID: 19812212
Notch-1; AVM; human; brain; signalling; angiogenesis
18.  A developmental and genetic classification for midbrain-hindbrain malformations 
Brain  2009;132(12):3199-3230.
Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered.
doi:10.1093/brain/awp247
PMCID: PMC2792369  PMID: 19933510
cerebellum; brain stem; malformations; development
19.  Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia 
Brain  2009;132(12):3411-3427.
Analysis of error types provides useful information about the stages and processes involved in normal and aphasic word production. In picture naming, semantic errors (horse for goat) generally result from something having gone awry in lexical access such that the right concept was mapped to the wrong word. This study used the new lesion analysis technique known as voxel-based lesion-symptom mapping to investigate the locus of lesions that give rise to semantic naming errors. Semantic errors were obtained from 64 individuals with post-stroke aphasia, who also underwent high-resolution structural brain scans. Whole brain voxel-based lesion-symptom mapping was carried out to determine where lesion status predicted semantic error rate. The strongest associations were found in the left anterior to mid middle temporal gyrus. This area also showed strong and significant effects in further analyses that statistically controlled for deficits in pre-lexical, conceptualization processes that might have contributed to semantic error production. This study is the first to demonstrate a specific and necessary role for the left anterior temporal lobe in mapping concepts to words in production. We hypothesize that this role consists in the conveyance of fine-grained semantic distinctions to the lexical system. Our results line up with evidence from semantic dementia, the convergence zone framework and meta-analyses of neuroimaging studies on word production. At the same time, they cast doubt on the classical linkage of semantic error production to lesions in and around Wernicke's area.
doi:10.1093/brain/awp284
PMCID: PMC2792374  PMID: 19942676
aphasia; voxel-based lesion-symptom mapping; naming; semantic; errors
20.  Relating visual to verbal semantic knowledge: the evaluation of object recognition in prosopagnosia 
Brain  2009;132(12):3456-3466.
Assessment of face specificity in prosopagnosia is hampered by difficulty in gauging pre-morbid expertise for non-face object categories, for which humans vary widely in interest and experience. In this study, we examined the correlation between visual and verbal semantic knowledge for cars to determine if visual recognition accuracy could be predicted from verbal semantic scores. We had 33 healthy subjects and six prosopagnosic patients first rated their own knowledge of cars. They were then given a test of verbal semantic knowledge that presented them with the names of car models, to which they were to match the manufacturer. Lastly, they were given a test of visual recognition, presenting them with images of cars to which they were to provide information at three levels of specificity: model, manufacturer and decade of make. In controls, while self-ratings were only moderately correlated with either visual recognition or verbal semantic knowledge, verbal semantic knowledge was highly correlated with visual recognition, particularly for more specific levels of information. Item concordance showed that less-expert subjects were more likely to provide the most specific information (model name) for the image when they could also match the manufacturer to its name. Prosopagnosic subjects showed reduced visual recognition of cars after adjusting for verbal semantic scores. We conclude that visual recognition is highly correlated with verbal semantic knowledge, that formal measures of verbal semantic knowledge are a more accurate gauge of expertise than self-ratings, and that verbal semantic knowledge can be used to adjust tests of visual recognition for pre-morbid expertise in prosopagnosia.
doi:10.1093/brain/awp252
PMCID: PMC2800384  PMID: 19805494
semantic memory; vision; object recognition; face processing
21.  Shortened internodal length of dermal myelinated nerve fibres in Charcot–Marie-Tooth disease type 1A 
Brain  2009;132(12):3263-3273.
Charcot–Marie-Tooth disease type 1A is the most common inherited neuropathy and is caused by duplication of chromosome 17p11.2 containing the peripheral myelin protein-22 gene. This disease is characterized by uniform slowing of conduction velocities and secondary axonal loss, which are in contrast with non-uniform slowing of conduction velocities in acquired demyelinating disorders, such as chronic inflammatory demyelinating polyradiculoneuropathy. Mechanisms responsible for the slowed conduction velocities and axonal loss in Charcot–Marie-Tooth disease type 1A are poorly understood, in part because of the difficulty in obtaining nerve samples from patients, due to the invasive nature of nerve biopsies. We have utilized glabrous skin biopsies, a minimally invasive procedure, to evaluate these issues systematically in patients with Charcot–Marie-Tooth disease type 1A (n = 32), chronic inflammatory demyelinating polyradiculoneuropathy (n = 4) and healthy controls (n = 12). Morphology and molecular architecture of dermal myelinated nerve fibres were examined using immunohistochemistry and electron microscopy. Internodal length was uniformly shortened in patients with Charcot–Marie-Tooth disease type 1A, compared with those in normal controls (P < 0.0001). Segmental demyelination was absent in the Charcot–Marie-Tooth disease type 1A group, but identifiable in all patients with chronic inflammatory demyelinating polyradiculoneuropathy. Axonal loss was measurable using the density of Meissner corpuscles and associated with an accumulation of intra-axonal mitochondria. Our study demonstrates that skin biopsy can reveal pathological and molecular architectural changes that distinguish inherited from acquired demyelinating neuropathies. Uniformly shortened internodal length in Charcot–Marie-Tooth disease type 1A suggests a potential developmental defect of internodal lengthening. Intra-axonal accumulation of mitochondria provides new insights into the pathogenesis of axonal degeneration in Charcot–Marie-Tooth disease type 1A.
doi:10.1093/brain/awp274
PMCID: PMC2800385  PMID: 19923170
CMT1A; internodal length; Schwann cell; skin biopsy; Charcot–Marie-Tooth disease
22.  A new subtype of frontotemporal lobar degeneration with FUS pathology 
Brain  2009;132(11):2922-2931.
Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The neuropathology associated with most FTD is characterized by abnormal cellular aggregates of either transactive response DNA-binding protein with Mr 43 kDa (TDP-43) or tau protein. However, we recently described a subgroup of FTD patients, representing around 10%, with an unusual clinical phenotype and pathology characterized by frontotemporal lobar degeneration with neuronal inclusions composed of an unidentified ubiquitinated protein (atypical FTLD-U; aFTLD-U). All cases were sporadic and had early-onset FTD with severe progressive behavioural and personality changes in the absence of aphasia or significant motor features. Mutations in the fused in sarcoma (FUS) gene have recently been identified as a cause of familial amyotrophic lateral sclerosis, with these cases reported to have abnormal cellular accumulations of FUS protein. Because of the recognized clinical, genetic and pathological overlap between FTD and amyotrophic lateral sclerosis, we investigated whether FUS might also be the pathological protein in aFTLD-U. In all our aFTLD-U cases (n = 15), FUS immunohistochemistry labelled all the neuronal inclusions and also demonstrated previously unrecognized glial pathology. Immunoblot analysis of protein extracted from post-mortem aFTLD-U brain tissue demonstrated increased levels of insoluble FUS. No mutations in the FUS gene were identified in any of our patients. These findings suggest that FUS is the pathological protein in a significant subgroup of sporadic FTD and reinforce the concept that FTD and amyotrophic lateral sclerosis are closely related conditions.
doi:10.1093/brain/awp214
PMCID: PMC2768659  PMID: 19674978
frontotemporal lobar degeneration; frontotemporal dementia; FUS; fused in sarcoma; TLS; translocated in liposarcoma
23.  Prefrontal cortex is critical for contextual processing: evidence from brain lesions 
Brain  2009;132(11):3002-3010.
We investigated the role of prefrontal cortex (PFC) in local contextual processing using a combined event-related potentials and lesion approach. Local context was defined as the occurrence of a short predictive series of visual stimuli occurring before delivery of a target event. Targets were preceded by either randomized sequences of standards or by sequences including a three-stimulus predictive sequence signalling the occurrence of a subsequent target event. PFC lesioned patients were impaired in their ability to use local contextual information. The response time for controls revealed a larger benefit for predictable targets than for random targets relative to PFC patients. PFC patients had reduced amplitude of a context-dependent positivity and failed to generate the expected P3b latency shift between predictive and non-predictive targets. These findings show that PFC patients are unable to utilize predictive local context to guide behaviour, providing evidence for a critical role of PFC in local contextual processing.
doi:10.1093/brain/awp230
PMCID: PMC2768662  PMID: 19713281
context; prefrontal cortex; P3b; EEG; context positivity
24.  Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study 
Brain  2009;132(11):2932-2946.
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
doi:10.1093/brain/awp232
PMCID: PMC2768663  PMID: 19762452
behavioural variant frontotemporal dementia; atrophy; cluster analysis; voxel-based morphometry
25.  The subependymal zone neurogenic niche: a beating heart in the centre of the brain 
Brain  2009;132(11):2909-2921.
The mammalian brain is a remarkably complex organ comprising millions of neurons, glia and various other cell types. Its impressive cytoarchitecture led to the long standing belief that it is a structurally static organ and thus very sensitive to injury. However, an area of striking structural flexibility has been recently described at the centre of the brain. It is the subependymal zone of the lateral wall of the lateral ventricles. The subependymal zone—like a beating heart—continuously sends new cells to different areas of the brain: neurons to the olfactory bulbs and glial cells to the cortex and the corpus callosum. Interestingly, the generation and flow of cells changes in response to signals from anatomically remote areas of the brain or even from the external environment of the organism, therefore indicating that subependymal neurogenesis—as a system—is integrated in the overall homeostatic function of the brain. In this review, it will be attempted to describe the fundamental structural and functional characteristics of the subependymal neurogenic niche and to summarize the available evidence regarding its plasticity. Special focus is given on issues such as whether adult neural stem cells are activated after neurodegeneration, whether defects in neurogenesis contribute to neuropathological conditions and whether monitoring changes in neurogenic activity can have a diagnostic value.
doi:10.1093/brain/awp237
PMCID: PMC2768664  PMID: 19773354
adult neural stem cells; neurodegeneration; neurogenesis; subependymal zone; subventricular zone

Results 1-25 (122)