PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (137)
 

Clipboard (0)
None
Journals
Year of Publication
1.  A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy 
Brain : a journal of neurology  2011;134(0 1):171-182.
The limb girdle muscular dystrophies (LGMDs) are a group of disorders with wide genetic and clinical heterogeneity. Recently, mutations in the ANO5 gene, which encodes a putative calcium-activated chloride channel belonging to the Anoctamin family of proteins, were identified in five families with one of two previously identified disorders, LGMD2L and non-dysferlin Miyoshi muscular dystrophy (MMD3). We screened a candidate group of 64 patients from 59 British and German kindreds and found the truncating mutation, c.191dupA in exon 5 of ANO5 in 20 patients, homozygously in 15 and in compound heterozygosity with other ANO5 variants in the rest. An intragenic SNP and an extragenic microsatellite marker are in linkage disequilibrium with the mutation, suggesting a founder effect in the Northern European population. We have further defined the clinical phenotype of ANO5-associated muscular dystrophy. Patients show adult onset proximal lower limb weakness with highly raised creatinine kinase (CK) values (average 4500 IU/l) and frequent muscle atrophy and asymmetry of muscle involvement. Onset varies from the early 20s to 50s and the weakness is generally slowly progressive, with most patients remaining ambulant for several decades. Distal presentation is much less common but a milder degree of distal lower limb weakness is often observed. Upper limb strength is only mildly affected and cardiac and respiratory function is normal. Females appear less frequently affected. In the North of England population we have identified eight patients with ANO5 mutations, suggesting a minimum prevalence of 0.27/100 000, twice as common as dysferlinopathy. We suggest that mutations in ANO5 represent a relatively common cause of adult onset muscular dystrophy with high CK and that mutation screening, particularly of the common mutation c.191dupA, should be an early step in the diagnostic algorithm of adult LGMD patients.
doi:10.1093/brain/awq294
PMCID: PMC4038512  PMID: 21186264
Autosomal recessive; genetic or acquired neuromuscular disorders; muscle; muscular dystrophy
2.  The non-motor syndrome of primary dystonia: clinical and pathophysiological implications 
Brain  2011;135(6):1668-1681.
Dystonia is typically considered a movement disorder characterized by motor manifestations, primarily involuntary muscle contractions causing twisting movements and abnormal postures. However, growing evidence indicates an important non-motor component to primary dystonia, including abnormalities in sensory and perceptual functions, as well as neuropsychiatric, cognitive and sleep domains. Here, we review this evidence and discuss its clinical and pathophysiological implications.
doi:10.1093/brain/awr224
PMCID: PMC3359748  PMID: 21933808
primary dystonia; non-motor; sensory; depression; endophenotypes; pathophysiology; quality of life
3.  Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury 
Brain  2011;135(4):1268-1280.
Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = −0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = −0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of patients will be required to assess the reproducibility of these findings and to determine whether this approach provides added value when combined with clinical and radiological information.
doi:10.1093/brain/awr286
PMCID: PMC3326246  PMID: 22116192
traumatic brain injury; microdialysis; amyloid-β; tau; neurofilament
4.  Corrigendum 
Brain  2011;135(4):1335.
doi:10.1093/brain/awr029
PMCID: PMC3871188
5.  Pathophysiological distortions in time perception and timed performance 
Brain  2011;135(3):656-677.
Distortions in time perception and timed performance are presented by a number of different neurological and psychiatric conditions (e.g. Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder and autism). As a consequence, the primary focus of this review is on factors that define or produce systematic changes in the attention, clock, memory and decision stages of temporal processing as originally defined by Scalar Expectancy Theory. These findings are used to evaluate the Striatal Beat Frequency Theory, which is a neurobiological model of interval timing based upon the coincidence detection of oscillatory processes in corticostriatal circuits that can be mapped onto the stages of information processing proposed by Scalar Timing Theory.
doi:10.1093/brain/awr210
PMCID: PMC3491636  PMID: 21921020
time perception; timing; striatum; frontal lobe; Parkinson's disease
6.  Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity 
Brain  2011;135(2):404-417.
Adult brain connectivity is shaped by the balance of sensory inputs in early life. In the case of pain pathways, it is less clear whether nociceptive inputs in infancy can have a lasting influence upon central pain processing and adult pain sensitivity. Here, we show that adult pain responses in the rat are ‘primed’ by tissue injury in the neonatal period. Rats that experience hind-paw incision injury at 3 days of age, display an increased magnitude and duration of hyperalgesia following incision in adulthood when compared with those with no early life pain experience. This priming of spinal reflex sensitivity was measured by both reductions in behavioural withdrawal thresholds and increased flexor muscle electromyographic responses to graded suprathreshold hind-paw stimuli in the 4 weeks following adult incision. Prior neonatal injury also ‘primed’ the spinal microglial response to adult injury, resulting in an increased intensity, spatial distribution and duration of ionized calcium-binding adaptor molecule-1-positive microglial reactivity in the dorsal horn. Intrathecal minocycline at the time of adult injury selectively prevented both the hyperalgesia and early microglial reactivity associated with prior neonatal injury. The enhanced neuroimmune response seen in neonatally primed animals could also be demonstrated in the absence of peripheral tissue injury by direct electrical stimulation of tibial nerve fibres, confirming that centrally mediated mechanisms contribute to these long-term effects. These data suggest that early life injury may predispose individuals to enhanced sensitivity to painful events.
doi:10.1093/brain/awr288
PMCID: PMC3281475  PMID: 22102650
pain; development; neuron–glia interaction; microglia; sensory processing
7.  Neurological diseases and pain 
Brain  2011;135(2):320-344.
Chronic pain is a frequent component of many neurological disorders, affecting 20–40% of patients for many primary neurological diseases. These diseases result from a wide range of pathophysiologies including traumatic injury to the central nervous system, neurodegeneration and neuroinflammation, and exploring the aetiology of pain in these disorders is an opportunity to achieve new insight into pain processing. Whether pain originates in the central or peripheral nervous system, it frequently becomes centralized through maladaptive responses within the central nervous system that can profoundly alter brain systems and thereby behaviour (e.g. depression). Chronic pain should thus be considered a brain disease in which alterations in neural networks affect multiple aspects of brain function, structure and chemistry. The study and treatment of this disease is greatly complicated by the lack of objective measures for either the symptoms or the underlying mechanisms of chronic pain. In pain associated with neurological disease, it is sometimes difficult to obtain even a subjective evaluation of pain, as is the case for patients in a vegetative state or end-stage Alzheimer's disease. It is critical that neurologists become more involved in chronic pain treatment and research (already significant in the fields of migraine and peripheral neuropathies). To achieve this goal, greater efforts are needed to enhance training for neurologists in pain treatment and promote greater interest in the field. This review describes examples of pain in different neurological diseases including primary neurological pain conditions, discusses the therapeutic potential of brain-targeted therapies and highlights the need for objective measures of pain.
doi:10.1093/brain/awr271
PMCID: PMC3281476  PMID: 22067541
brain imaging; Parkinson's disease; complex regional pain syndrome; migraine; brain trauma
8.  Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis 
Brain  2011;135(2):521-533.
Post-mortem ganglion cell dropout has been observed in multiple sclerosis; however, longitudinal in vivo assessment of retinal neuronal layers following acute optic neuritis remains largely unexplored. Peripapillary retinal nerve fibre layer thickness, measured by optical coherence tomography, has been proposed as an outcome measure in studies of neuroprotective agents in multiple sclerosis, yet potential swelling during the acute stages of optic neuritis may confound baseline measurements. The objective of this study was to ascertain whether patients with multiple sclerosis or neuromyelitis optica develop retinal neuronal layer pathology following acute optic neuritis, and to systematically characterize such changes in vivo over time. Spectral domain optical coherence tomography imaging, including automated retinal layer segmentation, was performed serially in 20 participants during the acute phase of optic neuritis, and again 3 and 6 months later. Imaging was performed cross-sectionally in 98 multiple sclerosis participants, 22 neuromyelitis optica participants and 72 healthy controls. Neuronal thinning was observed in the ganglion cell layer of eyes affected by acute optic neuritis 3 and 6 months after onset (P < 0.001). Baseline ganglion cell layer thicknesses did not demonstrate swelling when compared with contralateral unaffected eyes, whereas peripapillary retinal nerve fibre layer oedema was observed in affected eyes (P = 0.008) and subsequently thinned over the course of this study. Ganglion cell layer thickness was lower in both participants with multiple sclerosis and participants with neuromyelitis optica, with and without a history of optic neuritis, when compared with healthy controls (P < 0.001) and correlated with visual function. Of all patient groups investigated, those with neuromyelitis optica and a history of optic neuritis exhibited the greatest reduction in ganglion cell layer thickness. Results from our in vivo longitudinal study demonstrate retinal neuronal layer thinning following acute optic neuritis, corroborating the hypothesis that axonal injury may cause neuronal pathology in multiple sclerosis. Further, these data provide evidence of subclinical disease activity, in both participants with multiple sclerosis and with neuromyelitis optica without a history of optic neuritis, a disease in which subclinical disease activity has not been widely appreciated. No pathology was seen in the inner or outer nuclear layers of eyes with optic neuritis, suggesting that retrograde degeneration after optic neuritis may not extend into the deeper retinal layers. The subsequent thinning of the ganglion cell layer following acute optic neuritis, in the absence of evidence of baseline swelling, suggests the potential utility of quantitative optical coherence tomography retinal layer segmentation to monitor neuroprotective effects of novel agents in therapeutic trials.
doi:10.1093/brain/awr264
PMCID: PMC3281477  PMID: 22006982
optical coherence tomography; retinal segmentation; optic neuritis; multiple sclerosis; demyelinating disease; neuro-ophthalmology
10.  Reply: The impact of dementia prevalence on the utility of the AD8 
Brain  2011;135(1):e204.
doi:10.1093/brain/awr136
PMCID: PMC3267977
11.  Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot–Marie–Tooth disease type 1X 
Brain  2011;135(1):88-104.
Previous studies in our laboratory have shown that in models for three distinct forms of the inherited and incurable nerve disorder, Charcot–Marie–Tooth neuropathy, low-grade inflammation implicating phagocytosing macrophages mediates demyelination and perturbation of axons. In the present study, we focus on colony-stimulating factor-1, a cytokine implicated in macrophage differentiation, activation and proliferation and fostering neural damage in a model for Charcot–Marie–Tooth neuropathy 1B. By crossbreeding a model for the X-linked form of Charcot–Marie–Tooth neuropathy with osteopetrotic mice, a spontaneous null mutant for colony-stimulating factor-1, we demonstrate a robust and persistent amelioration of demyelination and axon perturbation. Furthermore, functionally important domains of the peripheral nervous system, such as juxtaparanodes and presynaptic terminals, were preserved in the absence of colony-stimulating factor-1-dependent macrophage activation. As opposed to other Schwann cell-derived cytokines, colony-stimulating factor-1 is expressed by endoneurial fibroblasts, as revealed by in situ hybridization, immunocytochemistry and detection of β-galactosidase expression driven by the colony-stimulating factor-1 promoter. By both light and electron microscopic studies, we detected extended cell–cell contacts between the colony-stimulating factor-1-expressing fibroblasts and endoneurial macrophages as a putative prerequisite for the effective and constant activation of macrophages by fibroblasts in the chronically diseased nerve. Interestingly, in human biopsies from patients with Charcot–Marie–Tooth type 1, we also found frequent cell–cell contacts between macrophages and endoneurial fibroblasts and identified the latter as main source for colony-stimulating factor-1. Therefore, our study provides strong evidence for a similarly pathogenic role of colony-stimulating factor-1 in genetically mediated demyelination in mice and Charcot–Marie–Tooth type 1 disease in humans. Thus, colony-stimulating factor-1 or its cognate receptor are promising target molecules for treating the detrimental, low-grade inflammation of several inherited neuropathies in humans.
doi:10.1093/brain/awr283
PMCID: PMC3267979  PMID: 22094537
inflammation; endoneurial fibroblasts; myelin, axonopathy; neuromuscular junction
12.  Sensory neuronopathy in patients harbouring recessive polymerase γ mutations 
Brain  2011;135(1):62-71.
Defects in the mitochondrial DNA replication enzyme, polymerase γ, are an important cause of mitochondrial disease with ∼25% of all adult diagnoses attributed to mutations in the POLG gene. Peripheral neuronopathy is often part of the clinical syndrome and can represent the most disabling feature. In spite of this, the molecular mechanisms underlying the neuronopathy remain to be elucidated and treatment strategies are limited. In the present study, we use a combined approach comprising clinical, electrophysiological, neuropathological and molecular genetic investigations to unravel the mechanisms underpinning peripheral neuronopathy in autosomal recessive polymerase γ-related disease. Electrophysiological assessments documented a dorsal root ganglionopathy in all 11 cases. Of the 11 cases, eight also showed changes consistent with motor fibre loss. Detailed neuropathological investigation of two patients confirmed the electrophysiological findings, revealing atrophy of posterior columns and striking neuronal cell loss from the dorsal root ganglia, which was accompanied by severe mitochondrial biochemical abnormalities involving respiratory chain complexes I and IV due to clonally-expanded mitochondrial DNA deletions and a significant reduction in mitochondrial DNA copy number in affected neurons. We propose that the respiratory chain defects, secondary to mitochondrial DNA deletion and depletion, are likely to be responsible for pathology observed in the dorsal root ganglion and the sensory ganglionopathy documented electrophysiologically.
doi:10.1093/brain/awr326
PMCID: PMC3267986  PMID: 22189570
polymerase γ; mitochondrial DNA; sensory neuronopathy; neurodegeneration
13.  Alzheimer's disease pattern of brain atrophy predicts cognitive decline in Parkinson's disease 
Brain  2011;135(1):170-180.
Research suggests overlap in brain regions undergoing neurodegeneration in Parkinson's and Alzheimer's disease. To assess the clinical significance of this, we applied a validated Alzheimer's disease-spatial pattern of brain atrophy to patients with Parkinson's disease with a range of cognitive abilities to determine its association with cognitive performance and decline. At baseline, 84 subjects received structural magnetic resonance imaging brain scans and completed the Dementia Rating Scale-2, and new robust and expanded Dementia Rating Scale-2 norms were applied to cognitively classify participants. Fifty-nine non-demented subjects were assessed annually with the Dementia Rating Scale-2 for two additional years. Magnetic resonance imaging scans were quantified using both a region of interest approach and voxel-based morphometry analysis, and a method for quantifying the presence of an Alzheimer's disease spatial pattern of brain atrophy was applied to each scan. In multivariate models, higher Alzheimer's disease pattern of atrophy score was associated with worse global cognitive performance (β = −0.31, P = 0.007), including in non-demented patients (β = −0.28, P = 0.05). In linear mixed model analyses, higher baseline Alzheimer's disease pattern of atrophy score predicted long-term global cognitive decline in non-demented patients [F(1, 110) = 9.72, P = 0.002], remarkably even in those with normal cognition at baseline [F(1, 80) = 4.71, P = 0.03]. In contrast, in cross-sectional and longitudinal analyses there was no association between region of interest brain volumes and cognitive performance in patients with Parkinson's disease with normal cognition. These findings support involvement of the hippocampus and parietal–temporal cortex with cognitive impairment and long-term decline in Parkinson's disease. In addition, an Alzheimer's disease pattern of brain atrophy may be a preclinical biomarker of cognitive decline in Parkinson's disease.
doi:10.1093/brain/awr277
PMCID: PMC3316476  PMID: 22108576
Alzheimer's disease; dementia; mild cognitive impairment; Parkinson's disease; neurodegeneration
15.  Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity 
Brain  2011;134(12):3575-3586.
Pro-inflammatory T cells mediate autoimmune demyelination in multiple sclerosis. However, the factors driving their development and multiple sclerosis susceptibility are incompletely understood. We investigated how micro-RNAs, newly described as post-transcriptional regulators of gene expression, contribute to pathogenic T-cell differentiation in multiple sclerosis. miR-128 and miR-27b were increased in naïve and miR-340 in memory CD4+ T cells from patients with multiple sclerosis, inhibiting Th2 cell development and favouring pro-inflammatory Th1 responses. These effects were mediated by direct suppression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and interleukin-4 (IL4) expression, resulting in decreased GATA3 levels, and a Th2 to Th1 cytokine shift. Gain-of-function experiments with these micro-RNAs enhanced the encephalitogenic potential of myelin-specific T cells in experimental autoimmune encephalomyelitis. In addition, treatment of multiple sclerosis patient T cells with oligonucleotide micro-RNA inhibitors led to the restoration of Th2 responses. These data illustrate the biological significance and therapeutic potential of these micro-RNAs in regulating T-cell phenotypes in multiple sclerosis.
doi:10.1093/brain/awr262
PMCID: PMC3235556  PMID: 22088562
multiple sclerosis; miRNA; autoimmune T cells; Th1; Th2
16.  Functional connectivity magnetic resonance imaging classification of autism 
Brain  2011;134(12):3739-3751.
Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75% specificity for a total accuracy of 79% (P = 1.1 × 10−7). In subjects <20 years of age, the classifier performed at 89% accuracy (P = 5.4 × 10−7). In a replication dataset consisting of 21 individuals from six families with both affected and unaffected siblings, the classifier performed at 71% accuracy (91% accuracy for subjects <20 years of age). Classification scores in subjects with autism were significantly correlated with the Social Responsiveness Scale (P = 0.05), verbal IQ (P = 0.02) and the Autism Diagnostic Observation Schedule-Generic's combined social and communication subscores (P = 0.05). An analysis of informative connections demonstrated that region of interest pairs with strongest correlation values were most abnormal in autism. Negatively correlated region of interest pairs showed higher correlation in autism (less anticorrelation), possibly representing weaker inhibitory connections, particularly for long connections (Euclidean distance >10 cm). Brain regions showing greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula. Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects diminishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity magnetic resonance imaging diagnostic assay for autism.
doi:10.1093/brain/awr263
PMCID: PMC3235557  PMID: 22006979
autism spectrum disorders; resting state functional MRI; brain development; functional MRI; functional connectivity MRI
17.  Critical neural substrates for correcting unexpected trajectory errors and learning from them 
Brain  2011;134(12):3644-3658.
Our proficiency at any skill is critically dependent on the ability to monitor our performance, correct errors and adapt subsequent movements so that errors are avoided in the future. In this study, we aimed to dissociate the neural substrates critical for correcting unexpected trajectory errors and learning to adapt future movements based on those errors. Twenty stroke patients with focal damage to frontal or parietal regions in the left or right brain hemispheres and 20 healthy controls performed a task in which a novel mapping between actual hand motion and its visual feedback was introduced. Only patients with frontal damage in the right hemisphere failed to correct for this discrepancy during the ongoing movement. However, these patients were able to adapt to the distortion such that their movement direction on subsequent trials improved. In contrast, only patients with parietal damage in the left hemisphere showed a clear deficit in movement adaptation, but not in online correction. Left frontal or right parietal damage did not adversely impact upon either process. Our findings thus identify, for the first time, distinct and lateralized neural substrates critical for correcting unexpected errors during ongoing movements and error-based movement adaptation.
doi:10.1093/brain/awr275
PMCID: PMC3235559  PMID: 22075071
visuomotor adaptation; online correction; cognitive control; motor planning; voluntary movement
18.  Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla 
Brain  2011;134(12):3599-3612.
Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3′-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history.
doi:10.1093/brain/awr278
PMCID: PMC3235560  PMID: 22171355
multiple sclerosis; iron; myelin; magnetic resonance imaging; multi-gradient echo magnetic resonance imaging
19.  Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at µ-opioid receptor-expressing glia 
Brain  2011;134(12):3613-3628.
Individuals infected with human immunodeficiency virus-1 who abuse opiates can have a higher incidence of virus-associated neuropathology. Human immunodeficiency virus does not infect neurons, but viral proteins such as transactivator of transcription and glycoprotein 120, originating from infected glia, are neurotoxic. Moreover, functional changes in glial cells that enhance inflammation and reduce trophic support are increasingly implicated in human immunodeficiency virus neuropathology. In previous studies, co-exposure with morphine enhanced transactivator of transcription neurotoxicity towards cultured striatal neurons. Since those cultures contained µ-opioid receptor-expressing astroglia and microglia, and since glia are the principal site of infection in the central nervous system, we hypothesized that morphine synergy might be glially mediated. A 60 hour, repeated measures paradigm and multiple co-culture models were used to investigate the cellular basis for opiate-enhanced human immunodeficiency virus neurotoxicity. Morphine co-exposure significantly enhanced transactivator of transcription-induced neuron death when glia were present. Synergistic effects of morphine on transactivator of transcription neurotoxicity were greatest with neuron–glia contact, but also occurred to a lesser extent with glial conditioned medium. Importantly, synergy was lost if glia, but not neurons, lacked µ-opioid receptors, indicating that opiate interactions with human immunodeficiency virus converge at the level of µ-opioid receptor-expressing glia. Morphine enhanced transactivator of transcription-induced inflammatory effectors released by glia, elevating reactive oxygen species, increasing 3-nitrotyrosine production by microglia, and reducing the ability of glia to buffer glutamate. But neuron survival was reduced even more with glial contact than with exposure to conditioned medium, suggesting that noxious elements associated with cell contact augment the toxicity due to soluble factors. Similar morphine–transactivator of transcription synergy was also observed in studies with the clade C sequence of HIV-1 transactivator of transcription, which did not cause neuron death unless morphine was present. Several paradoxical observations related to opiate effects were noted when µ-opioid receptors were specifically ablated from either glia or neurons. This suggests that µ-opioid receptor loss in isolated cell types can fundamentally distort cell-to-cell signalling, revealing opponent processes that may exist in individual cell types. Our findings show the critical role of glia in orchestrating neurotoxic interactions of morphine and transactivator of transcription, and support the emerging concept that combined exposure to opiates and human immunodeficiency virus drives enhanced pathology within the central nervous system.
doi:10.1093/brain/awr281
PMCID: PMC3235561  PMID: 22102648
AIDS; neurodegenerative disorders; neuroinflammation; astroglia; microglia
20.  Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials 
Brain  2011;134(12):3544-3556.
Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy.
doi:10.1093/brain/awr291
PMCID: PMC3235564  PMID: 22102647
Becker muscular dystrophy; Duchenne muscular dystrophy; nNOS; dystrophin-associated glycoprotein complex; therapy
21.  Behaviour, physiology and experience of pathological laughing and crying in amyotrophic lateral sclerosis 
Brain  2011;134(12):3455-3466.
Pathological laughing and crying is a disorder of emotional expression seen in a number of neurological diseases. The aetiology is poorly understood, but clinical descriptions suggest a disorder of emotion regulation. The goals of this study were: (i) to characterize the subjective, behavioural and physiological emotional reactions that occur during episodes of pathological laughing and crying; (ii) to compare responses during these episodes to those that occur when emotions are elicited under standard conditions (watching sad and amusing emotional films, being startled); and (iii) to examine the ability of patients with this disorder to regulate their emotions under standardized conditions. Twenty-one patients with pathological laughing and crying due to amyotrophic lateral sclerosis and 14 with amyotrophic lateral sclerosis but no pathological laughing and crying were studied. Emotional measures included self-reported emotional experience, video recordings of facial reactivity and peripheral physiological responses (skin conductance, heart rate and somatic activity). Nineteen of the 21 patients with histories of pathological laughing and crying had at least one episode in the laboratory that they agreed constituted pathological laughing or crying (a total of 56 episodes were documented). Compared with viewing sad and amusing films, the episodes were associated with greater facial and physiological activation. Contrary to many clinical descriptions, episodes were often induced by contextually appropriate stimuli and associated with strong experiences of emotion that were consistent with the display. When instructed to regulate their facial responses to emotion-eliciting films, patients with pathological laughing and crying showed impairments compared with patients who did not have a history of this disorder. These findings support the idea that pathological laughing and crying represents activation of all channels of emotional responding (i.e. behavioural, physiological and subjective). Furthermore, they support previously advanced theories that, rather than being associated with general emotional hyperreactivity, this disorder may be due to dysfunction in frontal neural systems that support voluntary regulation of emotion.
doi:10.1093/brain/awr297
PMCID: PMC3235565  PMID: 22155983
behavioural neurology; pseudobulbar affect; affective neuroscience; amyotrophic lateral sclerosis
22.  Cerebrovascular lesions induce transient β-amyloid deposition 
Brain  2011;134(12):3694-3704.
Previous clinical studies have documented a close relationship between cerebrovascular disease and risk of Alzheimer's disease. We examined possible mechanistic interactions through use of experimental stroke models in a transgenic mouse model of β-amyloid deposition (APPswe/PS1dE9). Following middle cerebral artery occlusion, we observed a rapid increase in amyloid plaque burden in the region surrounding the infarction. In human tissue samples, however, we were unable to detect a localized increase in amyloid burden adjacent to cerebral infarcts. To resolve this discrepancy, we generated cerebral microstrokes in amyloid precursor protein mouse models with the photosensitive dye Rose bengal, and monitored plaque formation in real time using multiphoton microscopy. We observed a striking increase in the number of new plaques and amyloid angiopathy in the area immediately surrounding the infarcted area; however, the effect was transient, potentially resolving the discord between mouse and human tissue. We did not detect changes in candidate proteins related to β-amyloid generation or degradation such as β-amyloid-converting enzyme, amyloid precursor protein, presenilin 1, neprylisin or insulin-degrading enzyme. Together, these results demonstrate that strokes can trigger accelerated amyloid deposition, most likely through interference with amyloid clearance pathways. Additionally, this study indicates that focal ischaemia provides an experimental paradigm in which to study the mechanisms of plaque seeding and growth.
doi:10.1093/brain/awr300
PMCID: PMC3235567  PMID: 22120142
Alzheimer's disease pathology; stroke; amyloid
23.  Quantification of increased cellularity during inflammatory demyelination 
Brain  2011;134(12):3587-3598.
Multiple sclerosis is characterized by inflammatory demyelination and irreversible axonal injury leading to permanent neurological disabilities. Diffusion tensor imaging demonstrates an improved capability over standard magnetic resonance imaging to differentiate axon from myelin pathologies. However, the increased cellularity and vasogenic oedema associated with inflammation cannot be detected or separated from axon/myelin injury by diffusion tensor imaging, limiting its clinical applications. A novel diffusion basis spectrum imaging, capable of characterizing water diffusion properties associated with axon/myelin injury and inflammation, was developed to quantitatively reveal white matter pathologies in central nervous system disorders. Tissue phantoms made of normal fixed mouse trigeminal nerves juxtaposed with and without gel were employed to demonstrate the feasibility of diffusion basis spectrum imaging to quantify baseline cellularity in the absence and presence of vasogenic oedema. Following the phantom studies, in vivo diffusion basis spectrum imaging and diffusion tensor imaging with immunohistochemistry validation were performed on the corpus callosum of cuprizone treated mice. Results demonstrate that in vivo diffusion basis spectrum imaging can effectively separate the confounding effects of increased cellularity and/or grey matter contamination, allowing successful detection of immunohistochemistry confirmed axonal injury and/or demyelination in middle and rostral corpus callosum that were missed by diffusion tensor imaging. In addition, diffusion basis spectrum imaging-derived cellularity strongly correlated with numbers of cell nuclei determined using immunohistochemistry. Our findings suggest that diffusion basis spectrum imaging has great potential to provide non-invasive biomarkers for neuroinflammation, axonal injury and demyelination coexisting in multiple sclerosis.
doi:10.1093/brain/awr307
PMCID: PMC3235568  PMID: 22171354
magnetic resonance imaging; diffusion tensor imaging; multiple tensor model; white matter injury; inflammation
24.  Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old 
Brain  2011;134(12):3705-3712.
The emergence of longevity in the modern world has brought a sense of urgency to understanding age-related neurodegenerative diseases such as Alzheimer's disease. Unfortunately, there is a lack of consensus regarding the correlation between the pathological substrates of neurodegeneration and dementia status, particularly in the oldest-old. To better understand the pathological correlates of dementia in the oldest-old, we characterized the topographical spread and severity of amyloid-β, tau, TDP-43 and α-synuclein pathologies in the 90+ Study, a prospective longitudinal population-based study of ageing and dementia. Neuropathological analysis with immunohistochemically labelled sections was carried out blind to clinical diagnosis on the first 108 participants of the 90+ Study who came to autopsy including participants with dementia (n = 66) and without dementia (n = 42). We used quantitative and/or semi-quantitative measures to assess the burden of amyloid-β, tau, TDP-43 and α-synuclein pathologies as well as hippocampal sclerosis. Amyloid-β and tau were the predominant pathologies in the 90+ Study cohort and both amyloid-β area and tau area occupied measures were strongly associated with the presence of dementia, as was Braak staging but semi-quantitative plaque scores were not. Notably, TDP-43 pathology also correlated with dementia, while α-synuclein distribution did not. In addition, hippocampal sclerosis was specific to participants with dementia and correlated with the presence of limbic TDP-43. In contrast to previous reports, we found that tau and amyloid-β continue to be robust pathological correlates of dementia, even in the oldest-old. While individuals with no dementia had limited hippocampal tau and neocortical amyloid-β pathology, dementia associated with an expansion in pathology, including increased neocortical tau and hippocampal amyloid-β plaques, more abundant neocortical amyloid-β deposition and hippocampal sclerosis with its attendant TDP-43 pathology.
doi:10.1093/brain/awr308
PMCID: PMC3235569  PMID: 22120149
Alzheimer's; tau; amyloid; dementia; oldest-old

Results 1-25 (137)