PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Reply: Early-onset Behr syndrome due to compound heterozygous mutations in OPA1 
Brain  2014;137(10):e302.
doi:10.1093/brain/awu187
PMCID: PMC4163031  PMID: 25012222
2.  Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy 
Brain  2013;137(2):335-353.
The mechanisms of incomplete penetrance in Leber’s hereditary optic neuropathy are elusive. Giordano et al. show that mitochondrial DNA content and mitochondrial mass are both increased in tissues and cells from unaffected mutation carriers relative to affected relatives and control individuals. Upregulation of mitochondrial biogenesis may represent a therapeutic target.
Leber’s hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber’s hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber’s hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.
doi:10.1093/brain/awt343
PMCID: PMC3914475  PMID: 24369379
LHON penetrance; mitochondrial biogenesis; mtDNA copy number
3.  Reply: Sensorineural hearing loss in OPA1-linked disorders 
Brain  2013;136(7):e237.
doi:10.1093/brain/aws341
PMCID: PMC3692041  PMID: 23650221
5.  A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy 
Brain  2011;134(9):2677-2686.
Major advances in understanding the pathogenesis of inherited metabolic disease caused by mitochondrial DNA mutations have yet to translate into treatments of proven efficacy. Leber’s hereditary optic neuropathy is the most common mitochondrial DNA disorder causing irreversible blindness in young adult life. Anecdotal reports support the use of idebenone in Leber’s hereditary optic neuropathy, but this has not been evaluated in a randomized controlled trial. We conducted a 24-week multi-centre double-blind, randomized, placebo-controlled trial in 85 patients with Leber’s hereditary optic neuropathy due to m.3460G>A, m.11778G>A, and m.14484T>C or mitochondrial DNA mutations. The active drug was idebenone 900 mg/day. The primary end-point was the best recovery in visual acuity. The main secondary end-point was the change in best visual acuity. Other secondary end-points were changes in visual acuity of the best eye at baseline and changes in visual acuity for both eyes in each patient. Colour-contrast sensitivity and retinal nerve fibre layer thickness were measured in subgroups. Idebenone was safe and well tolerated. The primary end-point did not reach statistical significance in the intention to treat population. However, post hoc interaction analysis showed a different response to idebenone in patients with discordant visual acuities at baseline; in these patients, all secondary end-points were significantly different between the idebenone and placebo groups. This first randomized controlled trial in the mitochondrial disorder, Leber’s hereditary optic neuropathy, provides evidence that patients with discordant visual acuities are the most likely to benefit from idebenone treatment, which is safe and well tolerated.
doi:10.1093/brain/awr170
PMCID: PMC3170530  PMID: 21788663
LHON; idebenone; mitochondrial disease; mitochondrial encephalomyopathy; mitochondrial DNA; optic atrophy; optic neuropathy
8.  Gene–environment interactions in Leber hereditary optic neuropathy 
Brain  2009;132(9):2317-2326.
Leber hereditary optic neuropathy (LHON) is a genetic disorder primarily due to mutations of mitochondrial DNA (mtDNA). Environmental factors are thought to precipitate the visual failure and explain the marked incomplete penetrance of LHON, but previous small studies have failed to confirm this to be the case. LHON has no treatment, so identifying environmental triggers is the key to disease prevention, whilst potentially revealing new mechanisms amenable to therapeutic manipulation. To address this issue, we conducted a large, multicentre epidemiological study of 196 affected and 206 unaffected carriers from 125 LHON pedigrees known to harbour one of the three primary pathogenic mtDNA mutations: m.3460G>A, m.11778G>A and m.14484T>C. A comprehensive history of exposure to smoking, alcohol and other putative environmental insults was collected using a structured questionnaire. We identified a strong and consistent association between visual loss and smoking, independent of gender and alcohol intake, leading to a clinical penetrance of 93% in men who smoked. There was a trend towards increased visual failure with alcohol, but only with a heavy intake. Based on these findings, asymptomatic carriers of a LHON mtDNA mutation should be strongly advised not to smoke and to moderate their alcohol intake.
doi:10.1093/brain/awp158
PMCID: PMC2732267  PMID: 19525327
Leber hereditary optic neuropathy; mitochondrial DNA; alcohol; tobacco; epigenetics

Results 1-8 (8)