Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
Year of Publication
Document Types
1.  Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment 
Brain  2014;137(5):1550-1561.
Patients with Alzheimer’s disease show reduced cerebral blood flow, but it is unclear how this relates to β-amyloid pathology. By comparing patients with Alzheimer’s dementia, mild cognitive impairment, and controls, Mattsson et al. show that high β-amyloid load is associated with increased atrophy and reduced perfusion, independent of diagnosis.
Patients with Alzheimer’s disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer’s Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer’s disease with dementia (n = 24). Based on the theory that Alzheimer’s disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
PMCID: PMC3999717  PMID: 24625697
Alzheimer’s disease; beta-amyloid; PET imaging; perfusion imaging; magnetic resonance imaging
2.  Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease 
Brain  2013;136(3):844-858.
The factors driving clinical heterogeneity in Alzheimer’s disease are not well understood. This study assessed the relationship between amyloid deposition, glucose metabolism and clinical phenotype in Alzheimer’s disease, and investigated how these relate to the involvement of functional networks. The study included 17 patients with early-onset Alzheimer’s disease (age at onset <65 years), 12 patients with logopenic variant primary progressive aphasia and 13 patients with posterior cortical atrophy [whole Alzheimer’s disease group: age = 61.5 years (standard deviation 6.5 years), 55% male]. Thirty healthy control subjects [age = 70.8 (3.3) years, 47% male] were also included. Subjects underwent positron emission tomography with 11C-labelled Pittsburgh compound B and 18F-labelled fluorodeoxyglucose. All patients met National Institute on Ageing–Alzheimer’s Association criteria for probable Alzheimer’s disease and showed evidence of amyloid deposition on 11C-labelled Pittsburgh compound B positron emission tomography. We hypothesized that hypometabolism patterns would differ across variants, reflecting involvement of specific functional networks, whereas amyloid patterns would be diffuse and similar across variants. We tested these hypotheses using three complimentary approaches: (i) mass-univariate voxel-wise group comparison of 18F-labelled fluorodeoxyglucose and 11C-labelled Pittsburgh compound B; (ii) generation of covariance maps across all subjects with Alzheimer’s disease from seed regions of interest specifically atrophied in each variant, and comparison of these maps to functional network templates; and (iii) extraction of 11C-labelled Pittsburgh compound B and 18F-labelled fluorodeoxyglucose values from functional network templates. Alzheimer’s disease clinical groups showed syndrome-specific 18F-labelled fluorodeoxyglucose patterns, with greater parieto-occipital involvement in posterior cortical atrophy, and asymmetric involvement of left temporoparietal regions in logopenic variant primary progressive aphasia. In contrast, all Alzheimer’s disease variants showed diffuse patterns of 11C-labelled Pittsburgh compound B binding, with posterior cortical atrophy additionally showing elevated uptake in occipital cortex compared with early-onset Alzheimer’s disease. The seed region of interest covariance analysis revealed distinct 18F-labelled fluorodeoxyglucose correlation patterns that greatly overlapped with the right executive-control network for the early-onset Alzheimer’s disease region of interest, the left language network for the logopenic variant primary progressive aphasia region of interest, and the higher visual network for the posterior cortical atrophy region of interest. In contrast, 11C-labelled Pittsburgh compound B covariance maps for each region of interest were diffuse. Finally, 18F-labelled fluorodeoxyglucose was similarly reduced in all Alzheimer’s disease variants in the dorsal and left ventral default mode network, whereas significant differences were found in the right ventral default mode, right executive-control (both lower in early-onset Alzheimer’s disease and posterior cortical atrophy than logopenic variant primary progressive aphasia) and higher-order visual network (lower in posterior cortical atrophy than in early-onset Alzheimer’s disease and logopenic variant primary progressive aphasia), with a trend towards lower 18F-labelled fluorodeoxyglucose also found in the left language network in logopenic variant primary progressive aphasia. There were no differences in 11C-labelled Pittsburgh compound B binding between syndromes in any of the networks. Our data suggest that Alzheimer’s disease syndromes are associated with degeneration of specific functional networks, and that fibrillar amyloid-β deposition explains at most a small amount of the clinico-anatomic heterogeneity in Alzheimer’s disease.
PMCID: PMC3580269  PMID: 23358601
Alzheimer’s disease; posterior cortical atrophy; logopenic variant of PPA; positron emission tomography (PET); functional networks
3.  Spatial patterns of brain amyloid-β burden and atrophy rate associations in mild cognitive impairment 
Brain  2011;134(4):1077-1088.
Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer’s disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by 11C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer’s disease pathology, encouraging for the use of 11C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of Alzheimer’s disease. These results may begin to shed light on the mechanisms by which amyloid-β deposition leads to neurodegeneration and cognitive decline and the development of a more specific Alzheimer’s disease-specific imaging signature for diagnosis and use of this knowledge in the development of new anti-therapies for Alzheimer’s disease.
PMCID: PMC3069703  PMID: 21429865
MRI; 11C-PiB PET; Alzheimer’s disease; mild cognitive impairment; amyloid-β; amyloid; brain atrophy rate; multimodal brain imaging
4.  Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden 
Brain  2010;133(2):512-528.
Patients with early age-of-onset Alzheimer’s disease show more rapid progression, more generalized cognitive deficits and greater cortical atrophy and hypometabolism compared to late-onset patients at a similar disease stage. The biological mechanisms that underlie these differences are not well understood. The purpose of this study was to examine in vivo whether metabolic differences between early-onset and late-onset Alzheimer’s disease are associated with differences in the distribution and burden of fibrillar amyloid-β. Patients meeting criteria for probable Alzheimer’s disease (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's; Disease and Related Disorders Association criteria) were divided based on estimated age at first symptom (less than or greater than 65 years) into early-onset (n = 21, mean age-at-onset 55.2 ± 5.9 years) and late-onset (n = 18, 72.0 ± 4.7 years) groups matched for disease duration and severity. Patients underwent positron emission tomography with the amyloid-β-ligand [11C]-labelled Pittsburgh compound-B and the glucose analogue [18F]-labelled fluorodeoxyglucose. A group of cognitively normal controls (n = 30, mean age 73.7 ± 6.4) was studied for comparison. [11C]-labelled Pittsburgh compound-B images were analysed using Logan graphical analysis (cerebellar reference) and [18F]-labelled fluorodeoxyglucose images were normalized to mean activity in the pons. Group differences in tracer uptake were assessed on a voxel-wise basis using statistical parametric mapping, and by comparing mean values in regions of interest. To account for brain atrophy, analyses were repeated after applying partial volume correction to positron emission tomography data. Compared to normal controls, both early-onset and late-onset Alzheimer’s disease patient groups showed increased [11C]-labelled Pittsburgh compound-B uptake throughout frontal, parietal and lateral temporal cortices and striatum on voxel-wise and region of interest comparisons (P < 0.05). However, there were no significant differences in regional or global [11C]-labelled Pittsburgh compound-B binding between early-onset and late-onset patients. In contrast, early-onset patients showed significantly lower glucose metabolism than late-onset patients in precuneus/posterior cingulate, lateral temporo–parietal and occipital corticies (voxel-wise and region of interest comparisons, P < 0.05). Similar results were found for [11C]-labelled Pittsburgh compound-B and [18F]-labelled fluorodeoxyglucose using atrophy-corrected data. Age-at-onset correlated positively with glucose metabolism in precuneus, lateral parietal and occipital regions of interest (controlling for age, education and Mini Mental State Exam, P < 0.05), while no correlations were found between age-at-onset and [11C]-labelled Pittsburgh compound-B binding. In summary, a comparable burden of fibrillar amyloid-β was associated with greater posterior cortical hypometabolism in early-onset Alzheimer’s disease. Our data are consistent with a model in which both early amyloid-β accumulation and increased vulnerability to amyloid-β pathology play critical roles in the pathogenesis of Alzheimer’s disease in young patients.
PMCID: PMC2858015  PMID: 20080878
Alzheimer’s disease; age of onset; amyloid-β; [18F]-labelled fluorodeoxyglucose; [11C]-labelled Pittsburgh compound-B
5.  Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease 
Brain  2010;133(11):3336-3348.
Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies.
PMCID: PMC2965425  PMID: 20935035
mild cognitive impairment; amyloid imaging; magnetic resonance imaging; cerebrospinal fluid; Alzheimer’s disease biomarkers
6.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease* 
Brain  2009;132(8):2048-2057.
Mild cognitive impairment can represent a transitional state between normal ageing and Alzheimer's disease. Non-invasive diagnostic methods are needed to identify mild cognitive impairment individuals for early therapeutic interventions. Our objective was to determine whether automated magnetic resonance imaging-based measures could identify mild cognitive impairment individuals with a high degree of accuracy. Baseline volumetric T1-weighted magnetic resonance imaging scans of 313 individuals from two independent cohorts were examined using automated software tools to identify the volume and mean thickness of 34 neuroanatomic regions. The first cohort included 49 older controls and 48 individuals with mild cognitive impairment, while the second cohort included 94 older controls and 57 mild cognitive impairment individuals. Sixty-five patients with probable Alzheimer's disease were also included for comparison. For the discrimination of mild cognitive impairment, entorhinal cortex thickness, hippocampal volume and supramarginal gyrus thickness demonstrated an area under the curve of 0.91 (specificity 94%, sensitivity 74%, positive likelihood ratio 12.12, negative likelihood ratio 0.29) for the first cohort and an area under the curve of 0.95 (specificity 91%, sensitivity 90%, positive likelihood ratio 10.0, negative likelihood ratio 0.11) for the second cohort. For the discrimination of Alzheimer's disease, these three measures demonstrated an area under the curve of 1.0. The three magnetic resonance imaging measures demonstrated significant correlations with clinical and neuropsychological assessments as well as with cerebrospinal fluid levels of tau, hyperphosphorylated tau and abeta 42 proteins. These results demonstrate that automated magnetic resonance imaging measures can serve as an in vivo surrogate for disease severity, underlying neuropathology and as a non-invasive diagnostic method for mild cognitive impairment and Alzheimer's disease.
PMCID: PMC2714061  PMID: 19460794
MRI; mild cognitive impairment; Alzheimer's disease; diagnostic marker
7.  White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI 
Brain  2009;132(9):2579-2592.
Frontotemporal dementia (FTD) and Alzheimer's disease are sometimes difficult to differentiate clinically because of overlapping symptoms. Using diffusion tensor imaging (DTI) measurements of fractional anisotropy (FA) can be useful in distinguishing the different patterns of white matter degradation between the two dementias. In this study, we performed MRI scans in a 4 Tesla MRI machine including T1-weighted structural images and diffusion tensor images in 18 patients with FTD, 18 patients with Alzheimer's disease and 19 cognitively normal (CN) controls. FA was measured selectively in specific fibre tracts (including corpus callosum, cingulum, uncinate and corticospinal tracts) as well as globally in a voxel-by-voxel analysis. Patients with FTD were associated with reductions of FA in frontal and temporal regions including the anterior corpus callosum (P < 0.001), bilateral anterior (left P < 0.001; right P = 0.005), descending (left P < 0.001; right P = 0.003) cingulum tracts, and uncinate tracts (left P < 0.001; right P = 0.005), compared to controls. Patients with Alzheimer's disease were associated with reductions of FA in parietal, temporal and frontal regions including the left anterior (P = 0.003) and posterior (P = 0.002) cingulum tracts, bilateral descending cingulum tracts (P < 0.001) and left uncinate tracts (P < 0.001) compared to controls. When compared with Alzheimer's disease, FTD was associated with greater reductions of FA in frontal brain regions, whereas no region in Alzheimer's disease showed greater reductions of FA when compared to FTD. In conclusion, the regional patterns of anisotropy reduction in FTD and Alzheimer's disease compared to controls suggest a characteristic distribution of white matter degradation in each disease. Moreover, the white matter degradation seems to be more prominent in FTD than in Alzheimer's disease. Taken together, the results suggest that white matter degradation measured with DTI may improve the diagnostic differentiation between FTD and Alzheimer's disease.
PMCID: PMC2732263  PMID: 19439421
Alzheimer's disease; frontotemporal dementia; diffusion tensor imaging; diffusion tensor fibre tracking
8.  Structural anatomy of empathy in neurodegenerative disease 
Brain : a journal of neurology  2006;129(Pt 11):2945-2956.
Empathy is a complex social behaviour mediated by a network of brain structures. Recently, several functional imaging studies have investigated the neural basis of empathy, but few corroborative human lesion studies exist. Severe empathy loss is a common feature of frontotemporal lobar degeneration (FTLD), and is also seen in other neurodegenerative diseases. In this study, the neuroanatomic basis of empathy was investigated in 123 patients with FTLD, Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy using the Interpersonal Reactivity Index (IRI). IRI Empathic Concern and Perspective taking scores were correlated with structural MRI brain volume using voxel-based morphometry. Voxels in the right temporal pole, the right fusiform gyrus, the right caudate and right subcallosal gyrus correlated significantly with total empathy score (P < 0.05 after whole-brain correction for multiple comparisons). Empathy score correlated positively with the volume of right temporal structures in semantic dementia, and with subcallosal gyrus volume in frontotemporal dementia. These findings are consistent with previous research suggesting that a primarily right frontotemporal network of brain regions is involved in emotion processing, and highlights the roles of the right temporal pole and inferior frontal/striatal regions in regulating complex social interactions. This is the first large-scale lesion study to investigate the neural basis of empathy using correlational analytic methods. The results suggest that the right anterior temporal and medial frontal regions are essential for real-life empathic behaviour.
PMCID: PMC2562652  PMID: 17008334
dementia; empathy; frontotemporal lobar degeneration; temporal pole; VBM
9.  Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia 
Brain : a journal of neurology  2007;130(Pt 4):1159-1166.
Alzheimer’s disease and frontotemporal dementia (FTD) can be difficult to differentiate clinically because of overlapping symptoms. Distinguishing the two dementias based on volumetric measurements of brain atrophy with MRI has been only partially successful. Whether MRI measurements of cortical thinning improve the differentiation between Alzheimer’s disease and FTD is unclear. In this study, we measured cortical thickness using a set of automated tools (Freesurfer) to reconstruct the brain’s cortical surface from T1-weighted structural MRI data in 22 patients with Alzheimer’s disease, 19 patients with FTD and 23 cognitively normal subjects. The goals were to detect the characteristic patterns of cortical thinning in these two types of dementia, to test the relationship between cortical thickness and cognitive impairment, to determine if measurement of cortical thickness is better than that of cortical volume for differentiating between these dementias and normal ageing and improving the classification of Alzheimer’s disease and FTD based on neuropsychological scores alone. Compared to cognitively normal subjects, Alzheimer’s disease patients had a thinner cortex primarily in bilateral, frontal, parietal, temporal and occipital lobes (P < 0.001), while FTD patients had a thinner cortex in bilateral, frontal and temporal regions and some thinning in inferior parietal regions and the posterior cingulate (P< 0.001). Compared to FTD patients, Alzheimer’s disease patients had a thinner cortex (P< 0.001) in parts of bilateral parietal and precuneus regions. Cognitive impairment was negatively correlated with cortical thickness of frontal, parietal and temporal lobes in Alzheimer’s disease, while similar correlations were not significant in FTD. Measurement of cortical thickness was similar to that of cortical volume in differentiating between normal ageing, Alzheimer’s disease and FTD. Furthermore, cortical thickness measurements significantly improved the classification between Alzheimer’s disease and FTD based on neuropsychological scores alone, including the Mini-Mental State Examination and a modified version of the Trail-Making Test. In conclusion, the characteristic patterns of cortical thinning in Alzheimer’s disease and FTD suggest that cortical thickness may be a useful surrogate marker for these types of dementia.
PMCID: PMC1853284  PMID: 17353226
Alzheimer’s disease; frontotemporal dementia; cortical thickness; cortical volume
10.  Neuroanatomical correlates of behavioural disorders in dementia 
Brain : a journal of neurology  2005;128(Pt 11):2612-2625.
Neurodegenerative diseases are associated with profound changes in social and emotional function. The emergence of increasingly sophisticated methods for measuring brain volume has facilitated correlation of local changes in tissue content with cognitive and behavioural changes in neurodegenerative disease. The current study examined neuroanatomical correlates of behavioural abnormalities, as measured by the Neuropsychiatric Inventory, in 148 patients with dementia using voxel-based morphometry. Of 12 behaviours examined, 4 correlated with tissue loss: apathy, disinhibition, eating disorders and aberrant motor behaviour. Increasing severity across these four behaviours was associated with tissue loss in the ventral portion of the right anterior cingulate cortex (vACC) and adjacent ventromedial superior frontal gyrus (vmSFG), the right ventromedial prefrontal cortex (VMPC) more posteriorly, the right lateral middle frontal gyrus, the right caudate head, the right orbitofrontal cortex and the right anterior insula. In addition, apathy was independently associated with tissue loss in the right vmSFG, disinhibition with tissue loss in the right subgenual cingulate gyrus in the VMPC, and aberrant motor behaviour with tissue loss in the right dorsal ACC and left premotor cortex. These data strongly support the involvement of the right hemisphere in mediating social and emotional behaviour and highlight the importance of distinct regions on the medial wall of the right frontal lobe in regulating different behaviours. Furthermore, the findings underscore the utility of studying patients with dementia for understanding the neuroanatomical basis of social and emotional functions.
PMCID: PMC1820861  PMID: 16195246
frontotemporal dementia; neuropsychiatric inventory; voxel-based morphometry; right hemisphere; cingulate; ACC = anterior cingulate cortex; FTD = frontotemporal dementia; MMSE = Mini-Mental State Examination; NPI = Neuropsychiatric Inventory; OFC = orbitofrontal cortex; ROI = region of interest; SGC = subgenual cingulate gyrus; SPM = statistical parametric mapping; TIV = total intracranial volume; vACC = ventral portion of the right anterior cingulate cortex; VBM = voxel-based morphometry; VMPC = ventromedial prefrontal cortex; vmSFG = ventromedial superior frontal gyrus

Results 1-10 (10)