Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)
Year of Publication
1.  Music, memory and mechanisms in Alzheimer’s disease 
Brain  2015;138(8):2122-2125.
This scientific commentary refers to ‘Why musical memory can be preserved in advanced Alzheimer’s disease’, by Jacobsen et al. (doi:10.1093/brain/awv135).
PMCID: PMC4511859  PMID: 26205838
2.  Auditory spatial processing in Alzheimer’s disease 
Brain  2014;138(1):189-202.
Auditory spatial processing is vulnerable in dementia. Golden et al. show that patients with typical Alzheimer’s disease or posterior cortical atrophy are impaired relative to controls in detecting the movement and location of sounds. The deficits have anatomical correlates in right parietal cortex, with implications for studies of network degeneration.
The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer’s disease syndromic spectrum.
PMCID: PMC4285196  PMID: 25468732
space; auditory; Alzheimer’s; posterior cortical atrophy; voxel-based morphometry
3.  Prominent effects and neural correlates of visual crowding in a neurodegenerative disease population 
Brain  2014;137(12):3284-3299.
Visual crowding is a perceptual phenomenon whereby recognition of a stimulus is disrupted by the presence of flanker stimuli. Yong et al. observe excessive crowding in individuals with a neurodegenerative condition (posterior cortical atrophy) and identify associations between prominent crowding and lower grey matter volume in the right collateral sulcus.
Crowding is a breakdown in the ability to identify objects in clutter, and is a major constraint on object recognition. Crowding particularly impairs object perception in peripheral, amblyopic and possibly developing vision. Here we argue that crowding is also a critical factor limiting object perception in central vision of individuals with neurodegeneration of the occipital cortices. In the current study, individuals with posterior cortical atrophy (n = 26), typical Alzheimer’s disease (n = 17) and healthy control subjects (n = 14) completed centrally-presented tests of letter identification under six different flanking conditions (unflanked, and with letter, shape, number, same polarity and reverse polarity flankers) with two different target-flanker spacings (condensed, spaced). Patients with posterior cortical atrophy were significantly less accurate and slower to identify targets in the condensed than spaced condition even when the target letters were surrounded by flankers of a different category. Importantly, this spacing effect was observed for same, but not reverse, polarity flankers. The difference in accuracy between spaced and condensed stimuli was significantly associated with lower grey matter volume in the right collateral sulcus, in a region lying between the fusiform and lingual gyri. Detailed error analysis also revealed that similarity between the error response and the averaged target and flanker stimuli (but not individual target or flanker stimuli) was a significant predictor of error rate, more consistent with averaging than substitution accounts of crowding. Our findings suggest that crowding in posterior cortical atrophy can be regarded as a pre-attentive process that uses averaging to regularize the pathologically noisy representation of letter feature position in central vision. These results also help to clarify the cortical localization of feature integration components of crowding. More broadly, we suggest that posterior cortical atrophy provides a neurodegenerative disease model for exploring the basis of crowding. These data have significant implications for patients with, or who will go on to develop, dementia-related visual impairment, in whom acquired excessive crowding likely contributes to deficits in word, object, face and scene perception.
PMCID: PMC4240300  PMID: 25351740
crowding; lateral masking; Alzheimer’s disease; posterior cortical atrophy; acquired dyslexia
4.  Music, reward and frontotemporal dementia 
Brain  2014;137(10):e300.
PMCID: PMC4163029  PMID: 24919970
5.  A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies 
Brain  2011;134(9):2548-2564.
Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural variant frontotemporal dementia, while the clinical presentation in neuronal intermediate filament inclusion disease was more heterogeneous, including cases with motor neuron disease and extrapyramidal syndromes. Neuroimaging revealed atrophy of the frontal and anterior temporal lobes as well as the caudate in the cases with atypical frontotemporal lobar degeneration with ubiquitinated inclusions, but was more heterogeneous in the cases with neuronal intermediate filament inclusion disease, often being normal to visual inspection early on in the disease. The distribution and severity of fused in sarcoma-positive neuronal cytoplasmic inclusions, neuronal intranuclear inclusions and neurites were recorded and fused in sarcoma was biochemically analysed in both subgroups. Fused in sarcoma-positive neuronal cytoplasmic and intranuclear inclusions were found in the hippocampal granule cell layer in variable numbers. Cortical fused in sarcoma-positive neuronal cytoplasmic inclusions were often ‘Pick body-like’ in neuronal intermediate filament inclusion disease, and annular and crescent-shaped inclusions were seen in both conditions. Motor neurons contained variable numbers of compact, granular or skein-like cytoplasmic inclusions in all fused in sarcoma-positive cases in which brainstem and spinal cord motor neurons were available for study (five and four cases, respectively). No fused in sarcoma mutations were found in any cases. Biochemically, two major fused in sarcoma species were found and shown to be more insoluble in the atypical frontotemporal lobar degeneration with ubiquitinated inclusions subgroup compared with neuronal intermediate filament inclusion disease. There is considerable overlap and also significant differences in fused in sarcoma-positive pathology between the two subgroups, suggesting they may represent a spectrum of the same disease. The co-existence of fused in sarcoma-positive inclusions in both motor neurons and extramotor cerebral structures is a characteristic finding in sporadic fused in sarcoma proteinopathies, indicating a multisystem disorder.
PMCID: PMC3170529  PMID: 21752791
frontotemporal lobar degeneration; FUS; clinical presentation; neuropathology; biochemistry
6.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia 
Brain  2011;134(9):2456-2477.
Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, ‘possible’ behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). ‘Probable’ behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia ‘with definite frontotemporal lobar degeneration’ requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer’s disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met ‘possible’ criteria, and 104 (76%) met criteria for ‘probable’ behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with ‘possible’ and ‘probable’ criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines.
PMCID: PMC3170532  PMID: 21810890
behavioural variant frontotemporal dementia; diagnostic criteria; frontotemporal lobar degeneration; FTD; pathology
7.  Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease 
Brain  2012;135(4):1165-1179.
Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.
PMCID: PMC3326253  PMID: 22505631
emotion; Huntington's disease; neurodegenerative disorders; cognitive impairment; functional MRI
8.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features 
Brain  2012;135(3):736-750.
An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.
PMCID: PMC3286330  PMID: 22366791
frontotemporal lobar degeneration; motor neuron disease; neurodegenerative disorders; neuroimaging; genetics
9.  Impairments of auditory scene analysis in Alzheimer's disease 
Brain  2011;135(1):190-200.
Parsing of sound sources in the auditory environment or ‘auditory scene analysis’ is a computationally demanding cognitive operation that is likely to be vulnerable to the neurodegenerative process in Alzheimer’s disease. However, little information is available concerning auditory scene analysis in Alzheimer's disease. Here we undertook a detailed neuropsychological and neuroanatomical characterization of auditory scene analysis in a cohort of 21 patients with clinically typical Alzheimer's disease versus age-matched healthy control subjects. We designed a novel auditory dual stream paradigm based on synthetic sound sequences to assess two key generic operations in auditory scene analysis (object segregation and grouping) in relation to simpler auditory perceptual, task and general neuropsychological factors. In order to assess neuroanatomical associations of performance on auditory scene analysis tasks, structural brain magnetic resonance imaging data from the patient cohort were analysed using voxel-based morphometry. Compared with healthy controls, patients with Alzheimer's disease had impairments of auditory scene analysis, and segregation and grouping operations were comparably affected. Auditory scene analysis impairments in Alzheimer's disease were not wholly attributable to simple auditory perceptual or task factors; however, the between-group difference relative to healthy controls was attenuated after accounting for non-verbal (visuospatial) working memory capacity. These findings demonstrate that clinically typical Alzheimer's disease is associated with a generic deficit of auditory scene analysis. Neuroanatomical associations of auditory scene analysis performance were identified in posterior cortical areas including the posterior superior temporal lobes and posterior cingulate. This work suggests a basis for understanding a class of clinical symptoms in Alzheimer's disease and for delineating cognitive mechanisms that mediate auditory scene analysis both in health and in neurodegenerative disease.
PMCID: PMC3267978  PMID: 22036957
Alzheimer's disease; auditory scene analysis; auditory processing; voxel-based morphometry
10.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration 
Brain  2011;134(9):2565-2581.
Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Pick's disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Pick's disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.
PMCID: PMC3170537  PMID: 21908872
frontotemporal dementia; frontotemporal lobar degeneration; voxel-based morphometry; MRI; neural network
11.  Voice processing in dementia: a neuropsychological and neuroanatomical analysis 
Brain  2011;134(9):2535-2547.
Voice processing in neurodegenerative disease is poorly understood. Here we undertook a systematic investigation of voice processing in a cohort of patients with clinical diagnoses representing two canonical dementia syndromes: temporal variant frontotemporal lobar degeneration (n = 14) and Alzheimer’s disease (n = 22). Patient performance was compared with a healthy matched control group (n = 35). All subjects had a comprehensive neuropsychological assessment including measures of voice perception (vocal size, gender, speaker discrimination) and voice recognition (familiarity, identification, naming and cross-modal matching) and equivalent measures of face and name processing. Neuroanatomical associations of voice processing performance were assessed using voxel-based morphometry. Both disease groups showed deficits on all aspects of voice recognition and impairment was more severe in the temporal variant frontotemporal lobar degeneration group than the Alzheimer’s disease group. Face and name recognition were also impaired in both disease groups and name recognition was significantly more impaired than other modalities in the temporal variant frontotemporal lobar degeneration group. The Alzheimer’s disease group showed additional deficits of vocal gender perception and voice discrimination. The neuroanatomical analysis across both disease groups revealed common grey matter associations of familiarity, identification and cross-modal recognition in all modalities in the right temporal pole and anterior fusiform gyrus; while in the Alzheimer’s disease group, voice discrimination was associated with grey matter in the right inferior parietal lobe. The findings suggest that impairments of voice recognition are significant in both these canonical dementia syndromes but particularly severe in temporal variant frontotemporal lobar degeneration, whereas impairments of voice perception may show relative specificity for Alzheimer’s disease. The right anterior temporal lobe is likely to have a critical role in the recognition of voices and other modalities of person knowledge.
PMCID: PMC3170540  PMID: 21908871
voice; face; phonagnosia; frontotemporal dementia; Alzheimer’s disease
12.  The cognitive organization of music knowledge: a clinical analysis 
Brain  2010;133(4):1200-1213.
Despite much recent interest in the clinical neuroscience of music processing, the cognitive organization of music as a domain of non-verbal knowledge has been little studied. Here we addressed this issue systematically in two expert musicians with clinical diagnoses of semantic dementia and Alzheimer’s disease, in comparison with a control group of healthy expert musicians. In a series of neuropsychological experiments, we investigated associative knowledge of musical compositions (musical objects), musical emotions, musical instruments (musical sources) and music notation (musical symbols). These aspects of music knowledge were assessed in relation to musical perceptual abilities and extra-musical neuropsychological functions. The patient with semantic dementia showed relatively preserved recognition of musical compositions and musical symbols despite severely impaired recognition of musical emotions and musical instruments from sound. In contrast, the patient with Alzheimer’s disease showed impaired recognition of compositions, with somewhat better recognition of composer and musical era, and impaired comprehension of musical symbols, but normal recognition of musical emotions and musical instruments from sound. The findings suggest that music knowledge is fractionated, and superordinate musical knowledge is relatively more robust than knowledge of particular music. We propose that music constitutes a distinct domain of non-verbal knowledge but shares certain cognitive organizational features with other brain knowledge systems. Within the domain of music knowledge, dissociable cognitive mechanisms process knowledge derived from physical sources and the knowledge of abstract musical entities.
PMCID: PMC2850578  PMID: 20142334
music; semantic memory; dementia; semantic dementia; Alzheimer’s disease
13.  Non-verbal sound processing in the primary progressive aphasias 
Brain  2009;133(1):272-285.
Little is known about the processing of non-verbal sounds in the primary progressive aphasias. Here, we investigated the processing of complex non-verbal sounds in detail, in a consecutive series of 20 patients with primary progressive aphasia [12 with progressive non-fluent aphasia; eight with semantic dementia]. We designed a novel experimental neuropsychological battery to probe complex sound processing at early perceptual, apperceptive and semantic levels, using within-modality response procedures that minimized other cognitive demands and matching tests in the visual modality. Patients with primary progressive aphasia had deficits of non-verbal sound analysis compared with healthy age-matched individuals. Deficits of auditory early perceptual analysis were more common in progressive non-fluent aphasia, deficits of apperceptive processing occurred in both progressive non-fluent aphasia and semantic dementia, and deficits of semantic processing also occurred in both syndromes, but were relatively modality specific in progressive non-fluent aphasia and part of a more severe generic semantic deficit in semantic dementia. Patients with progressive non-fluent aphasia were more likely to show severe auditory than visual deficits as compared to patients with semantic dementia. These findings argue for the existence of core disorders of complex non-verbal sound perception and recognition in primary progressive aphasia and specific disorders at perceptual and semantic levels of cortical auditory processing in progressive non-fluent aphasia and semantic dementia, respectively.
PMCID: PMC2801322  PMID: 19797352
auditory perception; non-verbal sound; agnosia; dementia; environmental sounds
14.  A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series 
Brain : a journal of neurology  2008;131(Pt 3):706-720.
Mutations in the progranulin gene (GRN) are a major cause of frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions (FTLD-U) but the distinguishing clinical and anatomical features of this subgroup remain unclear. In a large UK cohort we found five different frameshift and premature termination mutations likely to be causative of FTLD in 25 affected family members. A previously described 4-bp insertion mutation in GRN exon 2 comprised the majority of cases in our cohort (20/25), with four novel mutations being identified in the other five affected members. Additional novel missense changes were discovered, of uncertain pathogenicity, but deletion of the entire gene was not detected. The patient collection was investigated by a single tertiary referral centre and is enriched for familial early onset FTLD with a high proportion of patients undergoing neuropsychological testing, MRI and eventual neuropathological diagnosis. Age at onset was variable, but four mutation carriers presented in their 40s and when analysed as a group, the mean age at onset of disease in GRN mutation carriers was later than tau gene (MAPT) mutation carriers and duration of disease was shorter when compared with both MAPTand FTLD-U without mutation. The most common clinical presentation seen in GRN mutation carriers was behavioural variant FTLD with apathy as the dominant feature. However, many patients had language output impairment that was either a progressive non-fluent aphasia or decreased speech output consistent with a dynamic aphasia. Neurological and neuropsychological examination also suggests that parietal lobe dysfunction is a characteristic feature of GRN mutation and differentiates this group from other patients with FTLD. MR imaging showed evidence of strikingly asymmetrical atrophy with the frontal, temporal and parietal lobes all affected. Both right- and left-sided predominant atrophy was seen even within the same family. As a group, the GRN carriers showed more asymmetry than in other FTLD groups. All pathologically investigated cases showed extensive type 3 TDP-43-positive pathology, including frequent neuronal cytoplasmic inclusions, dystrophic neurites in both grey and white matter and also neuronal intranuclear inclusions. Finally, we confirmed a modifying effect of APOE-E4 genotype on clinical phenotype with a later onset in the GRN carriers suggesting that this gene has distinct phenotypic effects in different neurodegenerative diseases.
PMCID: PMC2577762  PMID: 18234697
frontotemporal lobar degeneration; frontotemporal dementia; progranulin; progressive aphasia
15.  Word-finding difficulty: a clinical analysis of the progressive aphasias 
Brain : a journal of neurology  2007;131(Pt 1):8-38.
The patient with word-finding difficulty presents a common and challenging clinical problem. The complaint of ‘word-finding difficulty’ covers a wide range of clinical phenomena and may signify any of a number of distinct pathophysiological processes. Although it occurs in a variety of clinical contexts, word-finding difficulty generally presents a diagnostic conundrum when it occurs as a leading or apparently isolated symptom, most often as the harbinger of degenerative disease: the progressive aphasias. Recent advances in the neurobiology of the focal, language-based dementias have transformed our understanding of these processes and the ways in which they breakdown in different diseases, but translation of this knowledge to the bedside is far from straightforward. Speech and language disturbances in the dementias present unique diagnostic and conceptual problems that are not fully captured by classical models derived from the study of vascular and other acute focal brain lesions. This has led to a reformulation of our understanding of how language is organized in the brain. In this review we seek to provide the clinical neurologist with a practical and theoretical bridge between the patient presenting with word-finding difficulty in the clinic and the evidence of the brain sciences. We delineate key illustrative speech and language syndromes in the degenerative dementias, compare these syndromes with the syndromes of acute brain damage, and indicate how the clinical syndromes relate to emerging neurolinguistic, neuroanatomical and neurobiological insights. We propose a conceptual framework for the analysis of word-finding difficulty, in order both better to define the patient's complaint and its differential diagnosis for the clinician and to identify unresolved issues as a stimulus to future work.
PMCID: PMC2373641  PMID: 17947337
aphasia; progressive aphasia; anomia; dementia; speech and language

Results 1-15 (15)