PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre 
Brain  2013;136(9):2697-2706.
Cerebrovascular disease and vascular risk factors are associated with Alzheimer’s disease, but the evidence for their association with other neurodegenerative disorders is limited. Therefore, we compared the prevalence of cerebrovascular disease, vascular pathology and vascular risk factors in a wide range of neurodegenerative diseases and correlate them with dementia severity. Presence of cerebrovascular disease, vascular pathology and vascular risk factors was studied in 5715 cases of the National Alzheimer’s Coordinating Centre database with a single neurodegenerative disease diagnosis (Alzheimer’s disease, frontotemporal lobar degeneration due to tau, and TAR DNA-binding protein 43 immunoreactive deposits, α-synucleinopathies, hippocampal sclerosis and prion disease) based on a neuropathological examination with or without cerebrovascular disease, defined neuropathologically. In addition, 210 ‘unremarkable brain’ cases without cognitive impairment, and 280 cases with pure cerebrovascular disease were included for comparison. Cases with cerebrovascular disease were older than those without cerebrovascular disease in all the groups except for those with hippocampal sclerosis. After controlling for age and gender as fixed effects and centre as a random effect, we observed that α-synucleinopathies, frontotemporal lobar degeneration due to tau and TAR DNA-binding protein 43, and prion disease showed a lower prevalence of coincident cerebrovascular disease than patients with Alzheimer’s disease, and this was more significant in younger subjects. When cerebrovascular disease was also present, patients with Alzheimer’s disease and patients with α-synucleinopathy showed relatively lower burdens of their respective lesions than those without cerebrovascular disease in the context of comparable severity of dementia at time of death. Concurrent cerebrovascular disease is a common neuropathological finding in aged subjects with dementia, is more common in Alzheimer’s disease than in other neurodegenerative disorders, especially in younger subjects, and lowers the threshold for dementia due to Alzheimer’s disease and α-synucleinopathies, which suggests that these disorders should be targeted by treatments for cerebrovascular disease.
doi:10.1093/brain/awt188
PMCID: PMC3858112  PMID: 23842566
Alzheimer’s disease; frontotemporal lobar degeneration; vascular disease; dementia; epidemiology; neuropathology
2.  Inflammation and white matter degeneration persist for years after a single traumatic brain injury 
Brain  2013;136(1):28-42.
A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer’s disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer’s disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease, with traumatic brain injury patients serving as a model for longitudinal investigations, in particular with a view to identifying potential therapeutic interventions.
doi:10.1093/brain/aws322
PMCID: PMC3562078  PMID: 23365092
inflammation; diffuse axonal injury; traumatic brain injury; axonal pathology; microglia
3.  Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias 
Brain  2012;135(12):3749-3756.
A growing body of evidence demonstrates an association between vascular risk factors and Alzheimer’s disease. This study investigated the frequency and severity of atherosclerotic plaques in the circle of Willis in Alzheimer’s disease and multiple other neurodegenerative diseases. Semi-quantitative data from gross and microscopic neuropathological examinations in 1000 cases were analysed, including 410 with a primary diagnosis of Alzheimer’s disease, 230 with synucleinopathies, 157 with TDP-43 proteinopathies, 144 with tauopathies and 59 with normal ageing. More than 77% of subjects with Alzheimer’s disease had grossly apparent circle of Willis atherosclerosis, a percentage that was significantly higher than normal (47%), or other neurodegenerative diseases (43–67%). Age- and sex-adjusted atherosclerosis ratings were highly correlated with neuritic plaque, paired helical filaments tau neurofibrillary tangle and cerebral amyloid angiopathy ratings in the whole sample and within individual groups. We found no associations between atherosclerosis ratings and α-synuclein or TDP-43 lesion ratings. The association between age-adjusted circle of Willis atherosclerosis and Alzheimer’s disease–type pathology was more robust for female subjects than male subjects. These results provide further confirmation and specificity that vascular disease and Alzheimer’s disease are interrelated and suggest that common aetiologic or reciprocally synergistic pathophysiological mechanisms promote both vascular pathology and plaque and tangle pathology.
doi:10.1093/brain/aws271
PMCID: PMC3577102  PMID: 23204143
atherosclerosis; neuritic plaques; neurofibrillary tangles; synuclein; TDP-43
4.  Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies 
Brain  2012;135(3):807-818.
The microtubule-binding protein, tau, is the major component of neurofibrillary inclusions characteristic of Alzheimer's disease and related neurodegenerative tauopathies. When tau fibrillizes, it undergoes abnormal post-translational modifications resulting in decreased solubility and altered microtubule-stabilizing properties. Recently, we reported that the abnormal acetylation of tau at lysine residue 280 is a novel, pathological post-translational modification. Here, we performed detailed immunohistochemistry to further examine acetylated-tau expression in Alzheimer's disease and other major tauopathies. Immunohistochemistry using a polyclonal antibody specific for acetylated-tau at lysine 280 was conducted on 30 post-mortem central nervous system regions from patients with Alzheimer's disease (10 patients), corticobasal degeneration (5 patients), and progressive supranuclear palsy (5 patients). Acetylated-tau pathology was compared with the sequential emergence of other tau modifications in the Alzheimer's disease hippocampus using monoclonal antibodies to multiple well-characterized tau epitopes. All cases studied showed significant acetylated-tau pathology in a distribution pattern similar to hyperphosphorylated-tau. Acetylated-tau pathology was largely in intracellular, thioflavin-S-positive tau inclusions in Alzheimer's disease, and also thioflavin-S-negative pathology in corticobasal degeneration and progressive supranuclear palsy. Acetylated-tau was present throughout all stages of Alzheimer's disease pathology, but was more prominently associated with pathological tau epitopes in moderate to severe-stage cases. These temporal and morphological immunohistochemical features suggest acetylation of tau at this epitope is preceded by early modifications, including phosphorylation, and followed by later truncation events and cell death in Alzheimer's disease. Acetylation of tau at lysine 280 is a pathological modification that may contribute to tau-mediated neurodegeneration by both augmenting losses of normal tau properties (reduced solubility and microtubule assembly) as well as toxic gains of function (increased tau fibrillization). Thus, inhibiting tau acetylation could be a disease-modifying target for drug discovery target in tauopathies.
doi:10.1093/brain/aws013
PMCID: PMC3286338  PMID: 22366796
Alzheimer's disease; tauopathy; acetylation; post-translational modification; tau
5.  Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old 
Brain  2011;134(12):3705-3712.
The emergence of longevity in the modern world has brought a sense of urgency to understanding age-related neurodegenerative diseases such as Alzheimer's disease. Unfortunately, there is a lack of consensus regarding the correlation between the pathological substrates of neurodegeneration and dementia status, particularly in the oldest-old. To better understand the pathological correlates of dementia in the oldest-old, we characterized the topographical spread and severity of amyloid-β, tau, TDP-43 and α-synuclein pathologies in the 90+ Study, a prospective longitudinal population-based study of ageing and dementia. Neuropathological analysis with immunohistochemically labelled sections was carried out blind to clinical diagnosis on the first 108 participants of the 90+ Study who came to autopsy including participants with dementia (n = 66) and without dementia (n = 42). We used quantitative and/or semi-quantitative measures to assess the burden of amyloid-β, tau, TDP-43 and α-synuclein pathologies as well as hippocampal sclerosis. Amyloid-β and tau were the predominant pathologies in the 90+ Study cohort and both amyloid-β area and tau area occupied measures were strongly associated with the presence of dementia, as was Braak staging but semi-quantitative plaque scores were not. Notably, TDP-43 pathology also correlated with dementia, while α-synuclein distribution did not. In addition, hippocampal sclerosis was specific to participants with dementia and correlated with the presence of limbic TDP-43. In contrast to previous reports, we found that tau and amyloid-β continue to be robust pathological correlates of dementia, even in the oldest-old. While individuals with no dementia had limited hippocampal tau and neocortical amyloid-β pathology, dementia associated with an expansion in pathology, including increased neocortical tau and hippocampal amyloid-β plaques, more abundant neocortical amyloid-β deposition and hippocampal sclerosis with its attendant TDP-43 pathology.
doi:10.1093/brain/awr308
PMCID: PMC3235569  PMID: 22120149
Alzheimer's; tau; amyloid; dementia; oldest-old
6.  A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition 
Brain  2010;133(5):1391-1402.
We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent of corticobasal degeneration. Electron microscopic examination of isolated tau filaments demonstrated paired helical filaments and ribbon-like structures. Biochemical studies of tau demonstrated a preponderance of 4R tau isoforms. The phenotype was linked to Xq26.3, and further analysis identified an in-frame 9 base pair deletion in the solute carrier family 9, isoform A6 (SLC9A6 gene), which encodes sodium/hydrogen exchanger-6 localized to endosomal vesicles. Sodium/hydrogen exchanger-6 is thought to participate in the targeting of intracellular vesicles and may be involved in recycling synaptic vesicles. The striking tau deposition in our subjects reveals a probable interaction between sodium/proton exchangers and cytoskeletal elements involved in vesicular transport, and raises the possibility that abnormalities of vesicular targeting may play an important role in more common disorders such as Alzheimer’s disease and autism spectrum disorders.
doi:10.1093/brain/awq071
PMCID: PMC2859154  PMID: 20395263
mental retardation; corticobasal degeneration; tau expression; SLC9A6; autism
7.  Harnessing neuroplasticity for clinical applications 
Brain  2011;134(6):1591-1609.
Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies.
doi:10.1093/brain/awr039
PMCID: PMC3102236  PMID: 21482550
neuroplasticity; retraining; therapeutics; clinical assessment
8.  Cognitive reserve and Alzheimer's disease biomarkers are independent determinants of cognition 
Brain  2011;134(5):1479-1492.
The objective of this study was to investigate how a measure of educational and occupational attainment, a component of cognitive reserve, modifies the relationship between biomarkers of pathology and cognition in Alzheimer's disease. The biomarkers evaluated quantified neurodegeneration via atrophy on magnetic resonance images, neuronal injury via cerebral spinal fluid t-tau, brain amyloid-β load via cerebral spinal fluid amyloid-β1–42 and vascular disease via white matter hyperintensities on T2/proton density magnetic resonance images. We included 109 cognitively normal subjects, 192 amnestic patients with mild cognitive impairment and 98 patients with Alzheimer's disease, from the Alzheimer's Disease Neuroimaging Initiative study, who had undergone baseline lumbar puncture and magnetic resonance imaging. We combined patients with mild cognitive impairment and Alzheimer's disease in a group labelled ‘cognitively impaired’ subjects. Structural Abnormality Index scores, which reflect the degree of Alzheimer's disease-like anatomic features on magnetic resonance images, were computed for each subject. We assessed Alzheimer's Disease Assessment Scale (cognitive behaviour section) and mini-mental state examination scores as measures of general cognition and Auditory–Verbal Learning Test delayed recall, Boston naming and Trails B scores as measures of specific domains in both groups of subjects. The number of errors on the American National Adult Reading Test was used as a measure of environmental enrichment provided by educational and occupational attainment, a component of cognitive reserve. We found that in cognitively normal subjects, none of the biomarkers correlated with the measures of cognition, whereas American National Adult Reading Test scores were significantly correlated with Boston naming and mini-mental state examination results. In cognitively impaired subjects, the American National Adult Reading Test and all biomarkers of neuronal pathology and amyloid load were independently correlated with all cognitive measures. Exceptions to this general conclusion were absence of correlation between cerebral spinal fluid amyloid-β1–42 and Boston naming and Trails B. In contrast, white matter hyperintensities were only correlated with Boston naming and Trails B results in the cognitively impaired. When all subjects were included in a flexible ordinal regression model that allowed for non-linear effects and interactions, we found that the American National Adult Reading Test had an independent additive association such that better performance was associated with better cognitive performance across the biomarker distribution. Our main conclusions included: (i) that in cognitively normal subjects, the variability in cognitive performance is explained partly by the American National Adult Reading Test and not by biomarkers of Alzheimer's disease pathology; (ii) in cognitively impaired subjects, the American National Adult Reading Test, biomarkers of neuronal pathology (structural magnetic resonance imaging and cerebral spinal fluid t-tau) and amyloid load (cerebral spinal fluid amyloid-β1–42) all independently explain variability in general cognitive performance; and (iii) that the association between cognition and the American National Adult Reading Test was found to be additive rather than to interact with biomarkers of Alzheimer's disease pathology.
doi:10.1093/brain/awr049
PMCID: PMC3097887  PMID: 21478184
Alzheimer's disease; mild cognitive impairment; CSF biomarkers; MRI; cognitive reserve
9.  Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease 
Brain  2010;133(11):3336-3348.
Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies.
doi:10.1093/brain/awq277
PMCID: PMC2965425  PMID: 20935035
mild cognitive impairment; amyloid imaging; magnetic resonance imaging; cerebrospinal fluid; Alzheimer’s disease biomarkers

Results 1-9 (9)