PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease 
Brain  2013;136(3):844-858.
The factors driving clinical heterogeneity in Alzheimer’s disease are not well understood. This study assessed the relationship between amyloid deposition, glucose metabolism and clinical phenotype in Alzheimer’s disease, and investigated how these relate to the involvement of functional networks. The study included 17 patients with early-onset Alzheimer’s disease (age at onset <65 years), 12 patients with logopenic variant primary progressive aphasia and 13 patients with posterior cortical atrophy [whole Alzheimer’s disease group: age = 61.5 years (standard deviation 6.5 years), 55% male]. Thirty healthy control subjects [age = 70.8 (3.3) years, 47% male] were also included. Subjects underwent positron emission tomography with 11C-labelled Pittsburgh compound B and 18F-labelled fluorodeoxyglucose. All patients met National Institute on Ageing–Alzheimer’s Association criteria for probable Alzheimer’s disease and showed evidence of amyloid deposition on 11C-labelled Pittsburgh compound B positron emission tomography. We hypothesized that hypometabolism patterns would differ across variants, reflecting involvement of specific functional networks, whereas amyloid patterns would be diffuse and similar across variants. We tested these hypotheses using three complimentary approaches: (i) mass-univariate voxel-wise group comparison of 18F-labelled fluorodeoxyglucose and 11C-labelled Pittsburgh compound B; (ii) generation of covariance maps across all subjects with Alzheimer’s disease from seed regions of interest specifically atrophied in each variant, and comparison of these maps to functional network templates; and (iii) extraction of 11C-labelled Pittsburgh compound B and 18F-labelled fluorodeoxyglucose values from functional network templates. Alzheimer’s disease clinical groups showed syndrome-specific 18F-labelled fluorodeoxyglucose patterns, with greater parieto-occipital involvement in posterior cortical atrophy, and asymmetric involvement of left temporoparietal regions in logopenic variant primary progressive aphasia. In contrast, all Alzheimer’s disease variants showed diffuse patterns of 11C-labelled Pittsburgh compound B binding, with posterior cortical atrophy additionally showing elevated uptake in occipital cortex compared with early-onset Alzheimer’s disease. The seed region of interest covariance analysis revealed distinct 18F-labelled fluorodeoxyglucose correlation patterns that greatly overlapped with the right executive-control network for the early-onset Alzheimer’s disease region of interest, the left language network for the logopenic variant primary progressive aphasia region of interest, and the higher visual network for the posterior cortical atrophy region of interest. In contrast, 11C-labelled Pittsburgh compound B covariance maps for each region of interest were diffuse. Finally, 18F-labelled fluorodeoxyglucose was similarly reduced in all Alzheimer’s disease variants in the dorsal and left ventral default mode network, whereas significant differences were found in the right ventral default mode, right executive-control (both lower in early-onset Alzheimer’s disease and posterior cortical atrophy than logopenic variant primary progressive aphasia) and higher-order visual network (lower in posterior cortical atrophy than in early-onset Alzheimer’s disease and logopenic variant primary progressive aphasia), with a trend towards lower 18F-labelled fluorodeoxyglucose also found in the left language network in logopenic variant primary progressive aphasia. There were no differences in 11C-labelled Pittsburgh compound B binding between syndromes in any of the networks. Our data suggest that Alzheimer’s disease syndromes are associated with degeneration of specific functional networks, and that fibrillar amyloid-β deposition explains at most a small amount of the clinico-anatomic heterogeneity in Alzheimer’s disease.
doi:10.1093/brain/aws327
PMCID: PMC3580269  PMID: 23358601
Alzheimer’s disease; posterior cortical atrophy; logopenic variant of PPA; positron emission tomography (PET); functional networks
3.  Behaviour, physiology and experience of pathological laughing and crying in amyotrophic lateral sclerosis 
Brain  2011;134(12):3455-3466.
Pathological laughing and crying is a disorder of emotional expression seen in a number of neurological diseases. The aetiology is poorly understood, but clinical descriptions suggest a disorder of emotion regulation. The goals of this study were: (i) to characterize the subjective, behavioural and physiological emotional reactions that occur during episodes of pathological laughing and crying; (ii) to compare responses during these episodes to those that occur when emotions are elicited under standard conditions (watching sad and amusing emotional films, being startled); and (iii) to examine the ability of patients with this disorder to regulate their emotions under standardized conditions. Twenty-one patients with pathological laughing and crying due to amyotrophic lateral sclerosis and 14 with amyotrophic lateral sclerosis but no pathological laughing and crying were studied. Emotional measures included self-reported emotional experience, video recordings of facial reactivity and peripheral physiological responses (skin conductance, heart rate and somatic activity). Nineteen of the 21 patients with histories of pathological laughing and crying had at least one episode in the laboratory that they agreed constituted pathological laughing or crying (a total of 56 episodes were documented). Compared with viewing sad and amusing films, the episodes were associated with greater facial and physiological activation. Contrary to many clinical descriptions, episodes were often induced by contextually appropriate stimuli and associated with strong experiences of emotion that were consistent with the display. When instructed to regulate their facial responses to emotion-eliciting films, patients with pathological laughing and crying showed impairments compared with patients who did not have a history of this disorder. These findings support the idea that pathological laughing and crying represents activation of all channels of emotional responding (i.e. behavioural, physiological and subjective). Furthermore, they support previously advanced theories that, rather than being associated with general emotional hyperreactivity, this disorder may be due to dysfunction in frontal neural systems that support voluntary regulation of emotion.
doi:10.1093/brain/awr297
PMCID: PMC3235565  PMID: 22155983
behavioural neurology; pseudobulbar affect; affective neuroscience; amyotrophic lateral sclerosis
4.  White matter damage in primary progressive aphasias: a diffusion tensor tractography study 
Brain  2011;134(10):3011-3029.
Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts’ mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia.
doi:10.1093/brain/awr099
PMCID: PMC3187537  PMID: 21666264
primary progressive aphasia; progressive non-fluent aphasia; semantic dementia; logopenic progressive aphasia; diffusion tensor imaging
5.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia 
Brain  2011;134(9):2456-2477.
Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, ‘possible’ behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). ‘Probable’ behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia ‘with definite frontotemporal lobar degeneration’ requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer’s disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met ‘possible’ criteria, and 104 (76%) met criteria for ‘probable’ behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with ‘possible’ and ‘probable’ criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines.
doi:10.1093/brain/awr179
PMCID: PMC3170532  PMID: 21810890
behavioural variant frontotemporal dementia; diagnostic criteria; frontotemporal lobar degeneration; FTD; pathology
6.  Connected speech production in three variants of primary progressive aphasia 
Brain  2010;133(7):2069-2088.
Primary progressive aphasia is a clinical syndrome defined by progressive deficits isolated to speech and/or language, and can be classified into non-fluent, semantic and logopenic variants based on motor speech, linguistic and cognitive features. The connected speech of patients with primary progressive aphasia has often been dichotomized simply as ‘fluent’ or ‘non-fluent’, however fluency is a multidimensional construct that encompasses features such as speech rate, phrase length, articulatory agility and syntactic structure, which are not always impacted in parallel. In this study, our first objective was to improve the characterization of connected speech production in each variant of primary progressive aphasia, by quantifying speech output along a number of motor speech and linguistic dimensions simultaneously. Secondly, we aimed to determine the neuroanatomical correlates of changes along these different dimensions. We recorded, transcribed and analysed speech samples for 50 patients with primary progressive aphasia, along with neurodegenerative and normal control groups. Patients were scanned with magnetic resonance imaging, and voxel-based morphometry was used to identify regions where atrophy correlated significantly with motor speech and linguistic features. Speech samples in patients with the non-fluent variant were characterized by slow rate, distortions, syntactic errors and reduced complexity. In contrast, patients with the semantic variant exhibited normal rate and very few speech or syntactic errors, but showed increased proportions of closed class words, pronouns and verbs, and higher frequency nouns, reflecting lexical retrieval deficits. In patients with the logopenic variant, speech rate (a common proxy for fluency) was intermediate between the other two variants, but distortions and syntactic errors were less common than in the non-fluent variant, while lexical access was less impaired than in the semantic variant. Reduced speech rate was linked with atrophy to a wide range of both anterior and posterior language regions, but specific deficits had more circumscribed anatomical correlates. Frontal regions were associated with motor speech and syntactic processes, anterior and inferior temporal regions with lexical retrieval, and posterior temporal regions with phonological errors and several other types of disruptions to fluency. These findings demonstrate that a multidimensional quantification of connected speech production is necessary to characterize the differences between the speech patterns of each primary progressive aphasic variant adequately, and to reveal associations between particular aspects of connected speech and specific components of the neural network for speech production.
doi:10.1093/brain/awq129
PMCID: PMC2892940  PMID: 20542982
primary progressive aphasia; progressive non-fluent aphasia; semantic dementia; logopenic progressive aphasia; speech production
7.  Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease 
Brain  2010;133(5):1352-1367.
Resting-state or intrinsic connectivity network functional magnetic resonance imaging provides a new tool for mapping large-scale neural network function and dysfunction. Recently, we showed that behavioural variant frontotemporal dementia and Alzheimer’s disease cause atrophy within two major networks, an anterior ‘Salience Network’ (atrophied in behavioural variant frontotemporal dementia) and a posterior ‘Default Mode Network’ (atrophied in Alzheimer’s disease). These networks exhibit an anti-correlated relationship with each other in the healthy brain. The two diseases also feature divergent symptom-deficit profiles, with behavioural variant frontotemporal dementia undermining social-emotional function and preserving or enhancing visuospatial skills, and Alzheimer’s disease showing the inverse pattern. We hypothesized that these disorders would exert opposing connectivity effects within the Salience Network (disrupted in behavioural variant frontotemporal dementia but enhanced in Alzheimer’s disease) and the Default Mode Network (disrupted in Alzheimer’s disease but enhanced in behavioural variant frontotemporal dementia). With task-free functional magnetic resonance imaging, we tested these ideas in behavioural variant frontotemporal dementia, Alzheimer’s disease and healthy age-matched controls (n = 12 per group), using independent component analyses to generate group-level network contrasts. As predicted, behavioural variant frontotemporal dementia attenuated Salience Network connectivity, most notably in frontoinsular, cingulate, striatal, thalamic and brainstem nodes, but enhanced connectivity within the Default Mode Network. Alzheimer’s disease, in contrast, reduced Default Mode Network connectivity to posterior hippocampus, medial cingulo-parieto-occipital regions and the dorsal raphe nucleus, but intensified Salience Network connectivity. Specific regions of connectivity disruption within each targeted network predicted intrinsic connectivity enhancement within the reciprocal network. In behavioural variant frontotemporal dementia, clinical severity correlated with loss of right frontoinsular Salience Network connectivity and with biparietal Default Mode Network connectivity enhancement. Based on these results, we explored whether a combined index of Salience Network and Default Mode Network connectivity might discriminate between the three groups. Linear discriminant analysis achieved 92% clinical classification accuracy, including 100% separation of behavioural variant frontotemporal dementia and Alzheimer’s disease. Patients whose clinical diagnoses were supported by molecular imaging, genetics, or pathology showed 100% separation using this method, including four diagnostically equivocal ‘test’ patients not used to train the algorithm. Overall, the findings suggest that behavioural variant frontotemporal dementia and Alzheimer’s disease lead to divergent network connectivity patterns, consistent with known reciprocal network interactions and the strength and deficit profiles of the two disorders. Further developed, intrinsic connectivity network signatures may provide simple, inexpensive, and non-invasive biomarkers for dementia differential diagnosis and disease monitoring.
doi:10.1093/brain/awq075
PMCID: PMC2912696  PMID: 20410145
functional magnetic resonance imaging; frontotemporal dementia; Alzheimer’s disease; functional connectivity; biomarker
8.  Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden 
Brain  2010;133(2):512-528.
Patients with early age-of-onset Alzheimer’s disease show more rapid progression, more generalized cognitive deficits and greater cortical atrophy and hypometabolism compared to late-onset patients at a similar disease stage. The biological mechanisms that underlie these differences are not well understood. The purpose of this study was to examine in vivo whether metabolic differences between early-onset and late-onset Alzheimer’s disease are associated with differences in the distribution and burden of fibrillar amyloid-β. Patients meeting criteria for probable Alzheimer’s disease (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's; Disease and Related Disorders Association criteria) were divided based on estimated age at first symptom (less than or greater than 65 years) into early-onset (n = 21, mean age-at-onset 55.2 ± 5.9 years) and late-onset (n = 18, 72.0 ± 4.7 years) groups matched for disease duration and severity. Patients underwent positron emission tomography with the amyloid-β-ligand [11C]-labelled Pittsburgh compound-B and the glucose analogue [18F]-labelled fluorodeoxyglucose. A group of cognitively normal controls (n = 30, mean age 73.7 ± 6.4) was studied for comparison. [11C]-labelled Pittsburgh compound-B images were analysed using Logan graphical analysis (cerebellar reference) and [18F]-labelled fluorodeoxyglucose images were normalized to mean activity in the pons. Group differences in tracer uptake were assessed on a voxel-wise basis using statistical parametric mapping, and by comparing mean values in regions of interest. To account for brain atrophy, analyses were repeated after applying partial volume correction to positron emission tomography data. Compared to normal controls, both early-onset and late-onset Alzheimer’s disease patient groups showed increased [11C]-labelled Pittsburgh compound-B uptake throughout frontal, parietal and lateral temporal cortices and striatum on voxel-wise and region of interest comparisons (P < 0.05). However, there were no significant differences in regional or global [11C]-labelled Pittsburgh compound-B binding between early-onset and late-onset patients. In contrast, early-onset patients showed significantly lower glucose metabolism than late-onset patients in precuneus/posterior cingulate, lateral temporo–parietal and occipital corticies (voxel-wise and region of interest comparisons, P < 0.05). Similar results were found for [11C]-labelled Pittsburgh compound-B and [18F]-labelled fluorodeoxyglucose using atrophy-corrected data. Age-at-onset correlated positively with glucose metabolism in precuneus, lateral parietal and occipital regions of interest (controlling for age, education and Mini Mental State Exam, P < 0.05), while no correlations were found between age-at-onset and [11C]-labelled Pittsburgh compound-B binding. In summary, a comparable burden of fibrillar amyloid-β was associated with greater posterior cortical hypometabolism in early-onset Alzheimer’s disease. Our data are consistent with a model in which both early amyloid-β accumulation and increased vulnerability to amyloid-β pathology play critical roles in the pathogenesis of Alzheimer’s disease in young patients.
doi:10.1093/brain/awp326
PMCID: PMC2858015  PMID: 20080878
Alzheimer’s disease; age of onset; amyloid-β; [18F]-labelled fluorodeoxyglucose; [11C]-labelled Pittsburgh compound-B
9.  Language networks in semantic dementia 
Brain  2009;133(1):286-299.
Cognitive deficits in semantic dementia have been attributed to anterior temporal lobe grey matter damage; however, key aspects of the syndrome could be due to altered anatomical connectivity between language pathways involving the temporal lobe. The aim of this study was to investigate the left language-related cerebral pathways in semantic dementia using diffusion tensor imaging-based tractography and to combine the findings with cortical anatomical and functional magnetic resonance imaging data obtained during a reading activation task. The left inferior longitudinal fasciculus, arcuate fasciculus and fronto-parietal superior longitudinal fasciculus were tracked in five semantic dementia patients and eight healthy controls. The left uncinate fasciculus and the genu and splenium of the corpus callosum were also obtained for comparison with previous studies. From each tract, mean diffusivity, fractional anisotropy, as well as parallel and transverse diffusivities were obtained. Diffusion tensor imaging results were related to grey and white matter atrophy volume assessed by voxel-based morphometry and functional magnetic resonance imaging activations during a reading task. Semantic dementia patients had significantly higher mean diffusivity, parallel and transverse in the inferior longitudinal fasciculus. The arcuate and uncinate fasciculi demonstrated significantly higher mean diffusivity, parallel and transverse and significantly lower fractional anisotropy. The fronto-parietal superior longitudinal fasciculus was relatively spared, with a significant difference observed for transverse diffusivity and fractional anisotropy, only. In the corpus callosum, the genu showed lower fractional anisotropy compared with controls, while no difference was found in the splenium. The left parietal cortex did not show significant volume changes on voxel-based morphometry and demonstrated normal functional magnetic resonance imaging activation in response to reading items that stress sublexical phonological processing. This study shows that semantic dementia is associated with anatomical damage to the major superior and inferior temporal white matter connections of the left hemisphere likely involved in semantic and lexical processes, with relative sparing of the fronto-parietal superior longitudinal fasciculus. Fronto-parietal regions connected by this tract were activated normally in the same patients during sublexical reading. These findings contribute to our understanding of the anatomical changes that occur in semantic dementia, and may further help to explain the dissociation between marked single-word and object knowledge deficits, but sparing of phonology and fluency in semantic dementia.
doi:10.1093/brain/awp233
PMCID: PMC2801321  PMID: 19759202
semantic dementia; semantic knowledge; diffusion tensor-based tractography; functional MRI; voxel-based morphometry
10.  ‘The quicksand of forgetfulness’: semantic dementia in One Hundred Years of Solitude 
Brain  2009;132(9):2609-2616.
This multidisciplinary article compares the pattern of memory loss described in Gabriel García Márquez's One Hundred Years of Solitude to that exhibited by patients with semantic dementia (SD). In his renowned novel, García Márquez depicts the plight of Macondo, a town struck by the dreaded insomnia plague. The most devastating symptom of the plague is not the impossibility of sleep, but rather the loss of ‘the name and notion of things’. In an effort to combat this insidious loss of knowledge, the protagonist, José Arcadio Buendía, ‘marked everything with its name: table, chair, clock, door, wall, bed, pan’. ‘Studying the infinite possibilities of a loss of memory, he realized that the day might come when things would be recognized by their inscriptions but that no one would remember their use’. The cognitive impairments experienced by Macondo's inhabitants are remarkably similar to those observed in SD, a clinical syndrome characterized by a progressive breakdown of conceptual knowledge (semantic memory) in the context of relatively preserved day-to-day (episodic) memory. First recognized in 1975, it is now considered one of the main variants of frontotemporal lobar degeneration. Writing within the realm of magical realism and investigating the power of language as a form of communication, García Márquez provides beautiful descriptions of the loss of ‘the name and notion of things’ typical of the syndrome. He further speculates on ways to cope with this dissolution of meaning, ranging from ‘the spell of an imaginary reality’ to José Arcadio's ‘memory machine’, strategies that resonate with attempts by semantic dementia patients to cope with their disease. Remarkably, García Márquez created a striking literary depiction of collective semantic dementia before the syndrome was recognized in neurology. The novel also provides an inspiring and human account of one town's fight against ‘the quicksand of forgetfulness’.
doi:10.1093/brain/awp100
PMCID: PMC3139943  PMID: 19447824
semantic dementia; Gabriel García Márquez; One Hundred Years of Solitude; magical realism; neurology and literature
11.  The neural basis of surface dyslexia in semantic dementia 
Brain  2008;132(1):71-86.
Semantic dementia (SD) is a neurodegenerative disease characterized by atrophy of anterior temporal regions and progressive loss of semantic memory. SD patients often present with surface dyslexia, a relatively selective impairment in reading low-frequency words with exceptional or atypical spelling-to-sound correspondences. Exception words are typically ‘over-regularized’ in SD and pronounced as they are spelled (e.g. ‘sew’ is pronounced as ‘sue’). This suggests that in the absence of sufficient item-specific knowledge, exception words are read by relying mainly on subword processes for regular mapping of orthography to phonology. In this study, we investigated the functional anatomy of surface dyslexia in SD using functional magnetic resonance imaging (fMRI) and studied its relationship to structural damage with voxel-based morphometry (VBM). Five SD patients and nine healthy age-matched controls were scanned while they read regular words, exception words and pseudowords in an event-related design. Vocal responses were recorded and revealed that all patients were impaired in reading low-frequency exception words, and made frequent over-regularization errors. Consistent with prior studies, fMRI data revealed that both groups activated a similar basic network of bilateral occipital, motor and premotor regions for reading single words. VBM showed that these regions were not significantly atrophied in SD. In control subjects, a region in the left intraparietal sulcus was activated for reading pseudowords and low-frequency regular words but not exception words, suggesting a role for this area in subword mapping from orthographic to phonological representations. In SD patients only, this inferior parietal region, which was not atrophied, was also activated by reading low-frequency exception words, especially on trials where over-regularization errors occurred. These results suggest that the left intraparietal sulcus is involved in subword reading processes that are differentially recruited in SD when word-specific information is lost. This loss is likely related to degeneration of the anterior temporal lobe, which was severely atrophied in SD. Consistent with this, left mid-fusiform and superior temporal regions that showed reading-related activations in controls were not activated in SD. Taken together, these results suggest that the left inferior parietal region subserves subword orthographic-to-phonological processes that are recruited for exception word reading when retrieval of exceptional, item-specific word forms is impaired by degeneration of the anterior temporal lobe.
doi:10.1093/brain/awn300
PMCID: PMC2638692  PMID: 19022856
semantic dementia; dyslexia; parietal lobe; voxel-based morphometry; functional MRI
12.  Development of methodology for conducting clinical trials in frontotemporal lobar degeneration 
Brain  2008;131(11):2957-2968.
To design clinical trials for the frontotemporal lobar degenerations (FTLD), knowledge about measurement of disease progression is needed to estimate power and enable the choice of optimal outcome measures. The aim here was to conduct a multicentre, 1 year replica of a clinical trial in patients with one of four FTLD syndromes, behavioural variant frontotemporal dementia (bvFTD), progressive nonfluent aphasia (PNFA), progressive logopenic aphasia (PLA) and semantic dementia (SMD). Patients with one of the four FTLD syndromes were recruited from five academic medical centres over a 2 year period. Standard operationalized diagnostic criteria were used. In addition to clinical inclusion and exclusion criteria, patients were required to exhibit focal frontal, temporal or insular brain atrophy or dysfunction by neuroimaging. Patients underwent neuropsychological, functional, behavioural, neurological and MR imaging assessment at baseline and approximately 12 months later. Potential outcome measures were examined for their rates of floor and ceiling values at baseline and end of study, their mean changes and variances. The neuropsychological tests were combined into two cognitive composites—one for language functions and the other for executive functions. There were 107 patients who underwent baseline assessment and 78 who completed a follow-up assessment within 10–16 months. Two global measures, the FTLD-modified Clinical Dementia Rating (FTLD-modified CDR) and the Clinical Global Impression of Change (CGIC) demonstrated decline in the majority of patients. Several cognitive measures showed negligible floor or ceiling scores either at baseline or follow-up. Scores declined at follow-up in the majority of patients. The cognitive, executive and combined composites were shown to be sensitive to change across all FTLD syndromes. Patients improved at follow-up on the behavioural scales—the Frontal Behavioural Inventory (22%) and the Neuropsychiatric Inventory (28%)—suggesting that these instruments may not be ideal for clinical trial use. It was feasible to recruit FTLD patients in a simulated multi-centre trial. There are several candidate outcome measures—including the FTLD-CDR and the cognitive composites— that could be used in clinical trials across the spectrum of FTLD.
doi:10.1093/brain/awn234
PMCID: PMC2725027  PMID: 18829698
frontotemporal dementia; clinical trials; neuropsychology
13.  White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI 
Brain  2009;132(9):2579-2592.
Frontotemporal dementia (FTD) and Alzheimer's disease are sometimes difficult to differentiate clinically because of overlapping symptoms. Using diffusion tensor imaging (DTI) measurements of fractional anisotropy (FA) can be useful in distinguishing the different patterns of white matter degradation between the two dementias. In this study, we performed MRI scans in a 4 Tesla MRI machine including T1-weighted structural images and diffusion tensor images in 18 patients with FTD, 18 patients with Alzheimer's disease and 19 cognitively normal (CN) controls. FA was measured selectively in specific fibre tracts (including corpus callosum, cingulum, uncinate and corticospinal tracts) as well as globally in a voxel-by-voxel analysis. Patients with FTD were associated with reductions of FA in frontal and temporal regions including the anterior corpus callosum (P < 0.001), bilateral anterior (left P < 0.001; right P = 0.005), descending (left P < 0.001; right P = 0.003) cingulum tracts, and uncinate tracts (left P < 0.001; right P = 0.005), compared to controls. Patients with Alzheimer's disease were associated with reductions of FA in parietal, temporal and frontal regions including the left anterior (P = 0.003) and posterior (P = 0.002) cingulum tracts, bilateral descending cingulum tracts (P < 0.001) and left uncinate tracts (P < 0.001) compared to controls. When compared with Alzheimer's disease, FTD was associated with greater reductions of FA in frontal brain regions, whereas no region in Alzheimer's disease showed greater reductions of FA when compared to FTD. In conclusion, the regional patterns of anisotropy reduction in FTD and Alzheimer's disease compared to controls suggest a characteristic distribution of white matter degradation in each disease. Moreover, the white matter degradation seems to be more prominent in FTD than in Alzheimer's disease. Taken together, the results suggest that white matter degradation measured with DTI may improve the diagnostic differentiation between FTD and Alzheimer's disease.
doi:10.1093/brain/awp071
PMCID: PMC2732263  PMID: 19439421
Alzheimer's disease; frontotemporal dementia; diffusion tensor imaging; diffusion tensor fibre tracking
14.  Structural anatomy of empathy in neurodegenerative disease 
Brain : a journal of neurology  2006;129(Pt 11):2945-2956.
Empathy is a complex social behaviour mediated by a network of brain structures. Recently, several functional imaging studies have investigated the neural basis of empathy, but few corroborative human lesion studies exist. Severe empathy loss is a common feature of frontotemporal lobar degeneration (FTLD), and is also seen in other neurodegenerative diseases. In this study, the neuroanatomic basis of empathy was investigated in 123 patients with FTLD, Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy using the Interpersonal Reactivity Index (IRI). IRI Empathic Concern and Perspective taking scores were correlated with structural MRI brain volume using voxel-based morphometry. Voxels in the right temporal pole, the right fusiform gyrus, the right caudate and right subcallosal gyrus correlated significantly with total empathy score (P < 0.05 after whole-brain correction for multiple comparisons). Empathy score correlated positively with the volume of right temporal structures in semantic dementia, and with subcallosal gyrus volume in frontotemporal dementia. These findings are consistent with previous research suggesting that a primarily right frontotemporal network of brain regions is involved in emotion processing, and highlights the roles of the right temporal pole and inferior frontal/striatal regions in regulating complex social interactions. This is the first large-scale lesion study to investigate the neural basis of empathy using correlational analytic methods. The results suggest that the right anterior temporal and medial frontal regions are essential for real-life empathic behaviour.
doi:10.1093/brain/awl254
PMCID: PMC2562652  PMID: 17008334
dementia; empathy; frontotemporal lobar degeneration; temporal pole; VBM
15.  Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer's disease 
Brain  2008;131(5):1268-1281.
Frontotemporal lobar degeneration (FTLD) often overlaps clinically with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP), both of which have prominent eye movement abnormalities. To investigate the ability of oculomotor performance to differentiate between FTLD, Alzheimer's disease, CBS and PSP, saccades and smooth pursuit were measured in three FTLD subtypes, including 24 individuals with frontotemporal dementia (FTD), 19 with semantic dementia (SD) and six with progressive non-fluent aphasia (PA), as compared to 28 individuals with Alzheimer's disease, 15 with CBS, 10 with PSP and 27 control subjects. Different combinations of oculomotor abnormalities were identified in all clinical syndromes except for SD, which had oculomotor performance that was indistinguishable from age-matched controls. Only PSP patients displayed abnormalities in saccade velocity, whereas abnormalities in saccade gain were observed in PSP > CBS > Alzheimer's disease subjects. All patient groups except those with SD were impaired on the anti-saccade task, however only the FTLD subjects and not Alzheimer's disease, CBS or PSP groups, were able to spontaneously self-correct anti-saccade errors as well as controls. Receiver operating characteristic statistics demonstrated that oculomotor findings were superior to neuropsychological tests in differentiating PSP from other disorders, and comparable to neuropsychological tests in differentiating the other patient groups. These data suggest that oculomotor assessment may aid in the diagnosis of FTLD and related disorders.
doi:10.1093/brain/awn047
PMCID: PMC2367697  PMID: 18362099
oculomotor; frontotemporal lobar degeneration; corticobasal syndrome; progressive supranuclear palsy; Alzheimer's disease
16.  Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia 
Brain : a journal of neurology  2007;130(Pt 4):1159-1166.
Alzheimer’s disease and frontotemporal dementia (FTD) can be difficult to differentiate clinically because of overlapping symptoms. Distinguishing the two dementias based on volumetric measurements of brain atrophy with MRI has been only partially successful. Whether MRI measurements of cortical thinning improve the differentiation between Alzheimer’s disease and FTD is unclear. In this study, we measured cortical thickness using a set of automated tools (Freesurfer) to reconstruct the brain’s cortical surface from T1-weighted structural MRI data in 22 patients with Alzheimer’s disease, 19 patients with FTD and 23 cognitively normal subjects. The goals were to detect the characteristic patterns of cortical thinning in these two types of dementia, to test the relationship between cortical thickness and cognitive impairment, to determine if measurement of cortical thickness is better than that of cortical volume for differentiating between these dementias and normal ageing and improving the classification of Alzheimer’s disease and FTD based on neuropsychological scores alone. Compared to cognitively normal subjects, Alzheimer’s disease patients had a thinner cortex primarily in bilateral, frontal, parietal, temporal and occipital lobes (P < 0.001), while FTD patients had a thinner cortex in bilateral, frontal and temporal regions and some thinning in inferior parietal regions and the posterior cingulate (P< 0.001). Compared to FTD patients, Alzheimer’s disease patients had a thinner cortex (P< 0.001) in parts of bilateral parietal and precuneus regions. Cognitive impairment was negatively correlated with cortical thickness of frontal, parietal and temporal lobes in Alzheimer’s disease, while similar correlations were not significant in FTD. Measurement of cortical thickness was similar to that of cortical volume in differentiating between normal ageing, Alzheimer’s disease and FTD. Furthermore, cortical thickness measurements significantly improved the classification between Alzheimer’s disease and FTD based on neuropsychological scores alone, including the Mini-Mental State Examination and a modified version of the Trail-Making Test. In conclusion, the characteristic patterns of cortical thinning in Alzheimer’s disease and FTD suggest that cortical thickness may be a useful surrogate marker for these types of dementia.
doi:10.1093/brain/awm016
PMCID: PMC1853284  PMID: 17353226
Alzheimer’s disease; frontotemporal dementia; cortical thickness; cortical volume
17.  Neuroanatomical correlates of behavioural disorders in dementia 
Brain : a journal of neurology  2005;128(Pt 11):2612-2625.
Neurodegenerative diseases are associated with profound changes in social and emotional function. The emergence of increasingly sophisticated methods for measuring brain volume has facilitated correlation of local changes in tissue content with cognitive and behavioural changes in neurodegenerative disease. The current study examined neuroanatomical correlates of behavioural abnormalities, as measured by the Neuropsychiatric Inventory, in 148 patients with dementia using voxel-based morphometry. Of 12 behaviours examined, 4 correlated with tissue loss: apathy, disinhibition, eating disorders and aberrant motor behaviour. Increasing severity across these four behaviours was associated with tissue loss in the ventral portion of the right anterior cingulate cortex (vACC) and adjacent ventromedial superior frontal gyrus (vmSFG), the right ventromedial prefrontal cortex (VMPC) more posteriorly, the right lateral middle frontal gyrus, the right caudate head, the right orbitofrontal cortex and the right anterior insula. In addition, apathy was independently associated with tissue loss in the right vmSFG, disinhibition with tissue loss in the right subgenual cingulate gyrus in the VMPC, and aberrant motor behaviour with tissue loss in the right dorsal ACC and left premotor cortex. These data strongly support the involvement of the right hemisphere in mediating social and emotional behaviour and highlight the importance of distinct regions on the medial wall of the right frontal lobe in regulating different behaviours. Furthermore, the findings underscore the utility of studying patients with dementia for understanding the neuroanatomical basis of social and emotional functions.
doi:10.1093/brain/awh628
PMCID: PMC1820861  PMID: 16195246
frontotemporal dementia; neuropsychiatric inventory; voxel-based morphometry; right hemisphere; cingulate; ACC = anterior cingulate cortex; FTD = frontotemporal dementia; MMSE = Mini-Mental State Examination; NPI = Neuropsychiatric Inventory; OFC = orbitofrontal cortex; ROI = region of interest; SGC = subgenual cingulate gyrus; SPM = statistical parametric mapping; TIV = total intracranial volume; vACC = ventral portion of the right anterior cingulate cortex; VBM = voxel-based morphometry; VMPC = ventromedial prefrontal cortex; vmSFG = ventromedial superior frontal gyrus

Results 1-17 (17)