PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Disease-specific molecular events in cortical multiple sclerosis lesions 
Brain  2013;136(6):1799-1815.
Cortical lesions constitute an important part of multiple sclerosis pathology. Although inflammation appears to play a role in their formation, the mechanisms leading to demyelination and neurodegeneration are poorly understood. We aimed to identify some of these mechanisms by combining gene expression studies with neuropathological analysis. In our study, we showed that the combination of inflammation, plaque-like primary demyelination and neurodegeneration in the cortex is specific for multiple sclerosis and is not seen in other chronic inflammatory diseases mediated by CD8-positive T cells (Rasmussen’s encephalitis), B cells (B cell lymphoma) or complex chronic inflammation (tuberculous meningitis, luetic meningitis or chronic purulent meningitis). In addition, we performed genome-wide microarray analysis comparing micro-dissected active cortical multiple sclerosis lesions with those of tuberculous meningitis (inflammatory control), Alzheimer’s disease (neurodegenerative control) and with cortices of age-matched controls. More than 80% of the identified multiple sclerosis-specific genes were related to T cell-mediated inflammation, microglia activation, oxidative injury, DNA damage and repair, remyelination and regenerative processes. Finally, we confirmed by immunohistochemistry that oxidative damage in cortical multiple sclerosis lesions is associated with oligodendrocyte and neuronal injury, the latter also affecting axons and dendrites. Our study provides new insights into the complex mechanisms of neurodegeneration and regeneration in the cortex of patients with multiple sclerosis.
doi:10.1093/brain/awt110
PMCID: PMC3673462  PMID: 23687122
multiple sclerosis; cortex; gene expression; demyelination; neurodegeneration
2.  Mitochondrial changes within axons in multiple sclerosis 
Brain : a journal of neurology  2009;132(Pt 5):1161-1174.
Summary
Multiple sclerosis is the most common cause of non-traumatic neurological impairment in young adults. An energy deficient state has been implicated in the degeneration of axons, the pathological correlate of disease progression, in multiple sclerosis. Mitochondria are the most efficient producers of energy and play an important role in calcium homeostasis. We analysed the density and function of mitochondria using immunohistochemistry and histochemistry, respectively, in chronic active and inactive lesions in progressive multiple sclerosis. As shown before in acute pattern III and Balo’s lesions, the mitochondrial respiratory chain complex IV activity is reduced despite the presence of mitochondria in demyelinated axons with amyloid precursor protein accumulation, which are predominantly located at the active edge of chronic active lesions. Furthermore, the strong non-phosphorylated neurofilament (SMI32) reactivity was associated with a significant reduction in complex IV activity and mitochondria within demyelinated axons. The complex IV defect associated with axonal injury may be mediated by soluble products of innate immunity, as suggested by an inverse correlation between complex IV activity and macrophage/microglial density in chronic lesions. However, in inactive areas of chronic multiple sclerosis lesions the mitochondrial respiratory chain complex IV activity and mitochondrial mass, judged by porin immunoreactivity, are increased within approximately half of large (>2.5 μm diameter) chronically demyelinated axons compared with large myelinated axons in the brain and spinal cord. The axon-specific mitochondrial docking protein (syntaphilin) and phosphorylated neurofilament-H were increased in chronic lesions. The lack of complex IV activity in a proportion of Na+/K+ ATPase α-1 positive demyelinated axons supports axonal dysfunction as a contributor to neurological impairment and disease progression. Furthermore, in vitro studies show that inhibition of complex IV augments glutamate-mediated axonal injury (amyloid precursor protein and SMI32 reactivity). Our findings have important implications for both axonal degeneration and dysfunction during the progressive stage of multiple sclerosis.
doi:10.1093/brain/awp046
PMCID: PMC3605917  PMID: 19293237
Mitochondria; axonal degeneration; multiple sclerosis
3.  Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla 
Brain  2011;134(12):3599-3612.
Previous authors have shown that the transverse relaxivity R2* and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a multiplicity of pathological processes. Hence, iron may have the unique potential to serve as an in vivo magnetic resonance imaging tracer of disease pathology. To investigate the ability of iron in tracking multiple sclerosis-induced pathology by magnetic resonance imaging, we performed qualitative histopathological analysis of white matter lesions and normal-appearing white matter regions with variable appearance on gradient echo magnetic resonance imaging at 7 Tesla. The samples used for this study derive from two patients with multiple sclerosis and one non-multiple sclerosis donor. Magnetic resonance images were acquired using a whole body 7 Tesla magnetic resonance imaging scanner equipped with a 24-channel receive-only array designed for tissue imaging. A 3D multi-gradient echo sequence was obtained and quantitative R2* and phase maps were reconstructed. Immunohistochemical stainings for myelin and oligodendrocytes, microglia and macrophages, ferritin and ferritin light polypeptide were performed on 3- to 5-µm thick paraffin sections. Iron was detected with Perl's staining and 3,3′-diaminobenzidine-tetrahydrochloride enhanced Turnbull blue staining. In multiple sclerosis tissue, iron presence invariably matched with an increase in R2*. Conversely, R2* increase was not always associated with the presence of iron on histochemical staining. We interpret this finding as the effect of embedding, sectioning and staining procedures. These processes likely affected the histopathological analysis results but not the magnetic resonance imaging that was obtained before tissue manipulations. Several cellular sources of iron were identified. These sources included oligodendrocytes in normal-appearing white matter and activated macrophages/microglia at the edges of white matter lesions. Additionally, in white matter lesions, iron precipitation in aggregates typical of microbleeds was shown by the Perl's staining. Our combined imaging and pathological study shows that multi-gradient echo magnetic resonance imaging is a sensitive technique for the identification of iron in the brain tissue of patients with multiple sclerosis. However, magnetic resonance imaging-identified iron does not necessarily reflect pathology and may also be seen in apparently normal tissue. Iron identification by multi-gradient echo magnetic resonance imaging in diseased tissues can shed light on the pathological processes when coupled with topographical information and patient disease history.
doi:10.1093/brain/awr278
PMCID: PMC3235560  PMID: 22171355
multiple sclerosis; iron; myelin; magnetic resonance imaging; multi-gradient echo magnetic resonance imaging
4.  Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis 
Brain  2011;134(7):1901-1913.
Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.
doi:10.1093/brain/awr110
PMCID: PMC3122369  PMID: 21705418
multiple sclerosis; axon; demyelination; mitochondria; remyelination
5.  NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury 
Brain  2012;135(3):886-899.
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and free radical-mediated tissue injury in the pathogenesis of multiple sclerosis.
doi:10.1093/brain/aws012
PMCID: PMC3286337  PMID: 22366799
multiple sclerosis; reactive oxygen species; oxidative injury; NADPH oxidase; demyelination; neurodegeneration
6.  Epstein–Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria 
Brain  2011;134(9):2772-2786.
Recent epidemiological and immunological studies provide evidence for an association between Epstein–Barr virus infection and multiple sclerosis, suggesting a role of Epstein–Barr virus infection in disease induction and pathogenesis. A key question in this context is whether Epstein–Barr virus-infected B lymphocytes are present within the central nervous system and the lesions of patients with multiple sclerosis. Previous studies on this topic provided highly controversial results, showing Epstein–Barr virus reactivity in B cells in the vast majority of multiple sclerosis cases and lesions, or only exceptional Epstein–Barr virus-positive B cells in rare cases. In an attempt to explain the reasons for these divergent results, a workshop was organized under the umbrella of the European Union FP6 NeuroproMiSe project, the outcome of which is presented here. This report summarizes the current knowledge of Epstein–Barr virus biology and shows that Epstein–Barr virus infection is highly complex. There are still major controversies, how to unequivocally identify Epstein–Barr virus infection in pathological tissues, particularly in situations other than Epstein–Barr virus-driven lymphomas or acute Epstein–Barr virus infections. It further highlights that unequivocal proof of Epstein–Barr virus infection in multiple sclerosis lesions is still lacking, due to issues related to the sensitivity and specificity of the detection methods.
doi:10.1093/brain/awr197
PMCID: PMC3170536  PMID: 21846731
multiple sclerosis; Epstein–Barr virus; EBV biology; EBV detection in tissue
7.  Oxidative damage in multiple sclerosis lesions 
Brain  2011;134(7):1914-1924.
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are currently poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Since mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, we analysed by immunocytochemistry the presence and cellular location of oxidized lipids and oxidized DNA in lesions and in normal-appearing white matter of 30 patients with multiple sclerosis and 24 control patients without neurological disease or brain lesions. As reported before in biochemical studies, oxidized lipids and DNA were highly enriched in active multiple sclerosis plaques, predominantly in areas that are defined as initial or ‘prephagocytic’ lesions. Oxidized DNA was mainly seen in oligodendrocyte nuclei, which in part showed signs of apoptosis. In addition, a small number of reactive astrocytes revealed nuclear expression of 8-hydroxy-d-guanosine. Similarly, lipid peroxidation-derived structures (malondialdehyde and oxidized phospholipid epitopes) were seen in the cytoplasm of oligodendrocytes and some astrocytes. In addition, oxidized phospholipids were massively accumulated in a fraction of axonal spheroids with disturbed fast axonal transport as well as in neurons within grey matter lesions. Neurons stained for oxidized phospholipids frequently revealed signs of degeneration with fragmentation of their dendritic processes. The extent of lipid and DNA oxidation correlated significantly with inflammation, determined by the number of CD3 positive T cells and human leucocyte antigen-D expressing macrophages and microglia in the lesions. Our data suggest profound oxidative injury of oligodendrocytes and neurons to be associated with active demyelination and axonal or neuronal injury in multiple sclerosis.
doi:10.1093/brain/awr128
PMCID: PMC3122372  PMID: 21653539
multiple sclerosis; demyelination; neurodegeneration; oxidative damage
8.  Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? 
Brain : a journal of neurology  2007;130(Pt 11):2800-2815.
Lesions obtained early in the course of multiple sclerosis (MS) have been studied immunocytochemically, and compared with the early stages of the experimental lesion induced in rats by the intraspinal injection of lipopolysaccharide. Large hemispheric or double hemispheric sections were examined from patients who had died in the course of acute or early relapsing multiple sclerosis. In MS patients exhibiting hypoxia-like lesions [Pattern III; Lucchinetti et al. Ann Neurol (2000) 47: 707–17], focal areas in the white matter showed mild oedema, microglial activation and mild axonal injury in the absence of overt demyelination. In such lesions T-cell infiltration was mild and restricted to the perivascular space. Myeloperoxidase and the inducible form of nitric oxide synthase were expressed primarily by microglia, and the activated form of these cells was associated with extracellular deposition of precipitated fibrin. In addition, these lesions showed up-regulation of proteins involved in tissue preconditioning. When active demyelination started, lesions were associated with massive T-cell infiltration and microglia and macrophages expressed all activation markers studied. Similar tissue alterations were found in rats in the pre-demyelinating stage of lesions induced by the focal injection of bacterial lipopolysaccharide into the spinal white matter. We suggest that the areas of microglial activation represent an early stage of tissue injury, which precedes the formation of hypoxia-like demyelinated plaques. The findings indicate that mechanisms associated with innate immunity may play a role in the formation of hypoxia-like demyelinating lesions in MS.
doi:10.1093/brain/awm236
PMCID: PMC2981817  PMID: 17956913
multiple sclerosis; lesion development; microglial activation; fibrin; innate immunity; lipopolysaccharide
9.  Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death 
Brain : a journal of neurology  2010;133(Pt 3):822-834.
Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation.
doi:10.1093/brain/awp337
PMCID: PMC2964508  PMID: 20157013
poly(ADP-ribose) polymerase; multiple sclerosis; cuprizone; demyelination; oligodendrocyte apoptosis; Akt; AIF; JNK
10.  The relation between inflammation and neurodegeneration in multiple sclerosis brains 
Brain  2009;132(5):1175-1189.
Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease.
doi:10.1093/brain/awp070
PMCID: PMC2677799  PMID: 19339255
multiple sclerosis; T cells; B cells; plasma cells; axonal injury
11.  Mitochondrial defects in acute multiple sclerosis lesions 
Brain  2008;131(7):1722-1735.
Multiple sclerosis is a chronic inflammatory disease, which leads to focal plaques of demyelination and tissue injury in the CNS. The structural and immunopathological patterns of demyelination suggest that different immune mechanisms may be involved in tissue damage. In a subtype of lesions, which are mainly found in patients with acute fulminant multiple sclerosis with Balo's type concentric sclerosis and in a subset of early relapsing remitting multiple sclerosis, the initial myelin changes closely resemble those seen in white matter stroke (WMS), suggesting a hypoxia-like tissue injury. Since mitochondrial injury may be involved in the pathogenesis of such lesions, we analysed a number of mitochondrial respiratory chain proteins in active lesions from acute multiple sclerosis and from WMS using immunohistochemistry. Functionally important defects of mitochondrial respiratory chain complex IV [cytochrome c oxidase (COX)] including its catalytic component (COX-I) are present in Pattern III but not in Pattern II multiple sclerosis lesions. The lack of immunohistochemically detected COX-I is apparent in oligodendrocytes, hypertrophied astrocytes and axons, but not in microglia. The profile of immunohistochemically detected mitochondrial respiratory chain complex subunits differs between multiple sclerosis and WMS. The findings suggest that hypoxia-like tissue injury in Pattern III multiple sclerosis lesions may be due to mitochondrial impairment.
doi:10.1093/brain/awn105
PMCID: PMC2442422  PMID: 18515320
multiple sclerosis; Pattern III lesion; mitochondria; cytochrome c oxidase

Results 1-11 (11)