PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  A new quality assessment parameter for optical coherence tomography 
Aim
To create a new, automated method of evaluating the quality of optical coherence tomography (OCT) images and to compare its image quality discriminating ability with the quality assessment parameters signal to noise ratio (SNR) and signal strength (SS).
Methods
A new OCT image quality assessment parameter, quality index (QI), was created. OCT images (linear macular scan, peripapillary circular scan, and optic nerve head scan) were analysed using the latest StratusOCT system. SNR and SS were collected for each image. QI was calculated based on image histogram information using a software program of our own design. To evaluate the performance of these parameters, the results were compared with subjective three level grading (excellent, acceptable, and poor) performed by three OCT experts.
Results
63 images of 21 subjects (seven each for normal, early/moderate, and advanced glaucoma) were enrolled in this study. Subjects were selected in a consecutive and retrospective fashion from our OCT imaging database. There were significant differences in SNR, SS, and QI between excellent and poor images (p = 0.04, p = 0.002, and p<0.001, respectively, Wilcoxon test) and between acceptable and poor images (p = 0.02, p<0.001, and p<0.001, respectively). Only QI showed significant difference between excellent and acceptable images (p = 0.001). Areas under the receiver operating characteristics (ROC) curve for discrimination of poor from excellent/acceptable images were 0.68 (SNR), 0.89 (IQP), and 0.99 (QI).
Conclusion
A quality index such as QI may permit automated objective and quantitative assessment of OCT image quality that performs similarly to an expert human observer.
doi:10.1136/bjo.2004.059824
PMCID: PMC1860175  PMID: 16424531
optical coherence tomography; signal to noise ratio
2.  A new quality assessment parameter for optical coherence tomography 
Aim
To create a new, automated method of evaluating the quality of optical coherence tomography (OCT) images and to compare its image quality discriminating ability with the quality assessment parameters signal to noise ratio (SNR) and signal strength (SS).
Methods
A new OCT image quality assessment parameter, quality index (QI), was created. OCT images (linear macular scan, peripapillary circular scan, and optic nerve head scan) were analysed using the latest StratusOCT system. SNR and SS were collected for each image. QI was calculated based on image histogram information using a software program of our own design. To evaluate the performance of these parameters, the results were compared with subjective three level grading (excellent, acceptable, and poor) performed by three OCT experts.
Results
63 images of 21 subjects (seven each for normal, early/moderate, and advanced glaucoma) were enrolled in this study. Subjects were selected in a consecutive and retrospective fashion from our OCT imaging database. There were significant differences in SNR, SS, and QI between excellent and poor images (p = 0.04, p = 0.002, and p<0.001, respectively, Wilcoxon test) and between acceptable and poor images (p = 0.02, p<0.001, and p<0.001, respectively). Only QI showed significant difference between excellent and acceptable images (p = 0.001). Areas under the receiver operating characteristics (ROC) curve for discrimination of poor from excellent/acceptable images were 0.68 (SNR), 0.89 (IQP), and 0.99 (QI).
Conclusion
A quality index such as QI may permit automated objective and quantitative assessment of OCT image quality that performs similarly to an expert human observer.
doi:10.1136/bjo.2004.059824
PMCID: PMC1860175  PMID: 16424531

Results 1-2 (2)