PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  A pharmacokinetic model to study the excretion of trichloroethylene and its metabolites after an inhalation exposure. 
For a better understanding of absorption, distribution, excretion, and metabolism of trichloroethylene the time-course of blood concentration of the vapour and urinary excretion of its metabolites was examined using a pharmacokinetic model. After a single experimental exposure in which four men inhaled 100 parts per million (ppm) of trichloroethylene for four hours an elimination curve showed three exponential components, that is, X=1-0005e(-16.71t)+0-449e(-1.710t)+0-255e(-0.2027t), where X is that blood concentration in mg/l and t the time in hours from 0 to 10. The overall rate constant for the disappearance of trichloroethylene was found to a agree with the theoretical one, estimated by means of a mathematical model for the blood concentration data. A D8- XD plot, developed from a mathematical model for urinary excretion, could also give a good estimate of rate constant for the transfer of trichloroethylene in the body. The rate constant thus estimated from urinary excretion was consistent with data on the blood concentration.
PMCID: PMC1008172  PMID: 843464
2.  Kinetic studies on sex difference in susceptibility to chronic benzene intoxication--with special reference to body fat content. 
The sex difference in the susceptibility to haematopoietic disorders induced by benzene was studied kinetically with a special reference to its relation with the body fat content. In rats of both sexes with a large body fat content, benzene was eliminated more slowly and remained in the body for a longer time than in rats with a small body fat content. In accord with this finding, the decrease in white blood cell numbers during a chronic benzene exposure was observed only in the groups of rats which had a large volume of fat tissue. In an experimental human exposure, the elimination of benzene was slower in the females than in the males. The kinetic study revealed that the slower elimination in the females is due primarily to the bulky distribution of body fat tissue in that sex. From these results obtained from the experimental exposure of men and rats to benzene, it was concluded that the human female, with her massive body fat tissue, shows an inherent disposition to be susceptible to a chemical such as benzene which has a high affinity with fat tissue.
PMCID: PMC1008083  PMID: 1103957
3.  Determination of benzene and toluene in blood by means of a syringe-equilibration method using a small amount of blood. 
A gas chromatographic determination of benzene and toluene in blood with a small amount of blood sample, 0.02 or 0.1 ml, is described. In the method an aliquot of the blood sample in a sealed hypodermic syringe of 2 ml capacity is equilibrated at 37 degrees C in a thermo-regulated water-bath. After establishing equilibrium 1 ml of overlying air is submitted to gas chromatographic analysis. The value of this method was verified by experiments in which men, rabbits, and rats were exposed to benzene and toluene mixtures of various concentrations.
PMCID: PMC1008060  PMID: 1171695

Results 1-3 (3)