PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Reply from the authors 
BJA: British Journal of Anaesthesia  2014;112(6):1121-1123.
doi:10.1093/bja/aeu173
PMCID: PMC4020385  PMID: 24829427
2.  Time course of haemostatic effects of fibrinogen concentrate administration in aortic surgery 
BJA: British Journal of Anaesthesia  2013;110(6):947-956.
Background
There is currently a contrast between the demonstrated benefits of fibrinogen concentrate in correcting bleeding and reducing transfusion, and its perceived thrombogenic potential. This analysis evaluates the effects of fibrinogen concentrate on coagulation up to 12 days after administration during aortic surgery.
Methods
We performed a post hoc analysis of a prospective, randomized, double-blind, controlled trial of fibrinogen concentrate as first-line haemostatic therapy in aortic surgery. After cardiopulmonary bypass (CPB) and protamine administration, subjects with coagulopathic bleeding received fibrinogen concentrate or placebo. The placebo group received allogeneic blood products, including fresh-frozen plasma (FFP; n=32); the fibrinogen concentrate group received fibrinogen concentrate alone (FC; n=14), or fibrinogen concentrate followed by allogeneic blood products (FC+FFP; n=15). Plasma fibrinogen, fibrin-based clotting (ROTEM®-based FIBTEM assay), and peri- and postoperative haematological and coagulation parameters were compared.
Results
Plasma fibrinogen and FIBTEM maximum clot firmness (MCF) decreased ∼50% during CPB but were corrected by FC or FC+FFP. At last suture, the highest values for plasma fibrinogen (360 mg dl−1) and FIBTEM MCF (22 mm) were within normal ranges—below the acute phase increases observed after surgery. In patients receiving only FFP as a source of fibrinogen, these parameters recovered marginally by last suture (P<0.001 vs FC and FC+FFP). All groups displayed comparable haemostasis at 24 h post-surgery. Fibrinogen concentrate did not cause alterations of other haemostasis parameters.
Conclusions
Fibrinogen concentrate provided specific, significant, short-lived increases in plasma fibrinogen and fibrin-based clot firmness after aortic surgery.
doi:10.1093/bja/aes576
PMCID: PMC3657602  PMID: 23388508
blood coagulation tests; cardiopulmonary bypass; fibrin; fibrinogen; plasma
3.  Haemostatic monitoring during postpartum haemorrhage and implications for management 
BJA: British Journal of Anaesthesia  2012;109(6):851-863.
Summary
Postpartum haemorrhage (PPH) is a major risk factor for maternal morbidity and mortality. PPH has numerous causative factors, which makes its occurrence and severity difficult to predict. Underlying haemostatic imbalances such as consumptive and dilutional coagulopathies may develop during PPH, and can exacerbate bleeding and lead to progression to severe PPH. Monitoring coagulation status in patients with PPH may be crucial for effective haemostatic management, goal-directed therapy, and improved outcomes. However, current PPH management guidelines do not account for the altered baseline coagulation status observed in pregnant patients, and the appropriate transfusion triggers to use in PPH are unknown, due to a lack of high-quality studies specific to this area. In this review, we consider the evidence for the use of standard laboratory-based coagulation tests and point-of-care viscoelastic coagulation monitoring in PPH. Many laboratory-based tests are unsuitable for emergency use due to their long turnaround times, so have limited value for the management of PPH. Emerging evidence suggests that viscoelastic monitoring, using thrombelastography- or thromboelastometry-based tests, may be useful for rapid assessment and for guiding haemostatic therapy during PPH. However, further studies are needed to define the ranges of reference values that should be considered ‘normal’ in this setting. Improving awareness of the correct application and interpretation of viscoelastic coagulation monitoring techniques may be critical in realizing their emergency diagnostic potential.
doi:10.1093/bja/aes361
PMCID: PMC3498756  PMID: 23075633
blood coagulation tests; point-of-care systems; postpartum haemorrhage; thrombelastography
4.  Recovery of fibrinogen after administration of fibrinogen concentrate to patients with severe bleeding after cardiopulmonary bypass surgery 
BJA: British Journal of Anaesthesia  2010;104(5):555-562.
Background
Normalization of plasma fibrinogen levels may be associated with satisfactory haemostasis and reduced bleeding. The aim of this retrospective study was to assess fibrinogen recovery parameters after administration of fibrinogen concentrate (Haemocomplettan® P) to patients with diffuse bleeding in cardiovascular surgery. Data on transfusion and patient outcomes were also collected.
Methods
Patient characteristic and clinical data were obtained from patient records. Results of the thromboelastometry (FIBTEM®) and of the standard coagulation tests, including plasma fibrinogen level, measured before surgery, before and after haemostatic therapy, and on the following day, were retrieved from laboratory records.
Results
Thirty-nine patients receiving fibrinogen concentrate for diffuse bleeding requiring haemostatic therapy after cardiopulmonary bypass were identified. The mean fibrinogen concentrate dose administered was 6.5 g. The mean fibrinogen level increased from 1.9 to 3.6 g litre−1 (mean increment of 0.28 g litre−1 per gram of concentrate administered); maximum clot firmness increased from 10 to 21 mm. The mean fibrinogen increase was 2.29 (sd 0.7) mg dl−1 per mg kg−1 bodyweight of concentrate administered. Thirty-five patients received no transfusion of fresh-frozen plasma (FFP) or platelet concentrate after receiving fibrinogen concentrate; the remaining four patients received platelet concentrate intraoperatively. Eleven patients received platelets, FFP, or both during the first postoperative day. No venous thromboses, arterial ischaemic events, or deaths were registered during hospitalization.
Conclusions
In this retrospective study, fibrinogen concentrate was effective in increasing plasma fibrinogen level, and contributed to the correction of bleeding after cardiovascular surgery.
doi:10.1093/bja/aeq058
PMCID: PMC2855672  PMID: 20348140
blood, coagulation; fibrinogen concentrate; pharmacokinetics, uptake; surgery, cardiovascular
5.  Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study 
BJA: British Journal of Anaesthesia  2009;102(6):785-792.
Background
Bleeding diathesis after aortic valve operation and ascending aorta replacement (AV–AA) is managed with fresh-frozen plasma (FFP) and platelet concentrates. The aim was to compare haemostatic effects of conventional transfusion management and FIBTEM (thromboelastometry test)-guided fibrinogen concentrate administration.
Methods
A blood products transfusion algorithm was developed using retrospective data from 42 elective patients (Group A). Two units of platelet concentrate were transfused after cardiopulmonary bypass, followed by 4 u of FFP if bleeding persisted, if platelet count was ≤100×103 µl−1 when removing the aortic clamp, and vice versa if platelet count was >100×103 µl−1. The trigger for each therapy step was ≥60 g blood absorbed from the mediastinal wound area by dry swabs in 5 min. Assignment to two prospective groups was neither randomized nor blinded; Group B (n=5) was treated according to the algorithm, Group C (n=10) received fibrinogen concentrate (Haemocomplettan® P/Riastap, CSL Behring, Marburg, Germany) before the algorithm-based therapy.
Results
A mean of 5.7 (0.7) g fibrinogen concentrate decreased blood loss to below the transfusion trigger level in all Group C patients. Group C had reduced transfusion [mean 0.7 (range 0–4) u vs 8.5 (5.3) in Group A and 8.2 (2.3) in Group B] and reduced postoperative bleeding [366 (199) ml vs 793 (560) in Group A and 716 (219) in Group B].
Conclusions
In this pilot study, FIBTEM-guided fibrinogen concentrate administration was associated with reduced transfusion requirements and 24 h postoperative bleeding in patients undergoing AV–AA.
doi:10.1093/bja/aep089
PMCID: PMC2683341  PMID: 19411671
blood, coagulation; measurement techniques, thrombelastograph; surgery, cardiovascular; transfusion

Results 1-5 (5)