Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Tissue Oxygenation Response to Mild Hypercapnia during Cardiopulmonary Bypass with Constant Pump Output 
British journal of anaesthesia  2006;96(6):708-714.
Tissue oxygenation is the primary determinant of wound infection risk. Mild hypercapnia markedly improves cutaneous, subcutaneous, and muscular tissue oxygenation in volunteers and patients. However, relative contributions of increased cardiac output and peripheral vasodilation to this response remains unknown. We thus tested the hypothesis that increased cardiac output is the dominant mechanism.
We recruited 10 ASA III patients, aged 40–65 years, undergoing cardiopulmonary bypass for this crossover trial. After induction of anaesthesia, a Silastic tonometer was inserted subcutaneously in the upper arm. Subcutaneous tissue oxygen tension was measured with both polarographic electrode and fluorescence-based systems. Oximeter probes were placed bilaterally on the forehead to monitor cerebral oxygenation. After initiation of cardiopulmonary bypass, in random order patients were exposed to two arterial CO2 partial pressures for 30 minutes each: 35 (normocapnia) or 50 mmHg (hypercapnia). Bypass pump flow was kept constant throughout the measurement periods.
Hypercapnia during bypass had essentially no effect on PaO2, mean arterial pressure, or tissue temperature. PaCO2 and pH differed significantly. Subcutaneous tissue oxygenation was virtually identical during the two PaCO2 periods (139 [50,163] vs. 145 [38,158], P=0.335) (median [range]). In contrast, cerebral oxygen saturation (our positive control measurement) was significantly less during normocapnia (57 [28,67]%) than hypercapnia (64 [37,89]%, P=0.025).
Mild hypercapnia, which normally markedly increases tissue oxygenation, did not do so during cardiopulmonary bypass with fixed pump output. This suggests that hypercapnia normally increases tissue oxygenation by increasing cardiac output rather than direct dilation of peripheral vessels.
PMCID: PMC1464052  PMID: 16675511
Carbon Dioxide; Hypercapnia; Hypercarbia; Acidosis; Respiratory; Oxygenation; Oxygen; Tissue; Cutaneous; Subcutaneous; Cerebral; Perfusion; Cerebrovascular; Cardiac Output
2.  Magnesium Sulfate Only Slightly Reduces the Shivering Threshold in Humans 
British journal of anaesthesia  2005;94(6):756-762.
Background: Hypothermia may be an effective treatment for stroke or acute myocardial infarction; however, it provokes vigorous shivering, which causes potentially dangerous hemodynamic responses and prevents further hypothermia. Magnesium is an attractive antishivering agent because it is used for treatment of postoperative shivering and provides protection against ischemic injury in animal models. We tested the hypothesis that magnesium reduces the threshold (triggering core temperature) and gain of shivering without substantial sedation or muscle weakness.
Methods: We studied nine healthy male volunteers (18-40 yr) on two randomly assigned treatment days: 1) Control and 2) Magnesium (80 mg·kg-1 followed by infusion at 2 g·h-1). Lactated Ringer's solution (4°C) was infused via a central venous catheter over a period of approximately 2 hours to decrease tympanic membrane temperature ≈1.5°C·h-1. A significant and persistent increase in oxygen consumption identified the threshold. The gain of shivering was determined by the slope of oxygen consumption vs. core temperature regression. Sedation was evaluated using verbal rating score (VRS, 0-10) and bispectral index of the EEG (BIS). Peripheral muscle strength was evaluated using dynamometry and spirometry. Data were analyzed using repeated-measures ANOVA; P<0.05 was statistically significant.
Results: Magnesium reduced the shivering threshold (36.3±0.4 [mean±SD] vs. 36.6±0.3°C, P=0.040). It did not affect the gain of shivering (Control: 437±289, Magnesium: 573±370 ml·min-1·°C-1, P=0.344). The magnesium bolus did not produce significant sedation or appreciably reduce muscle strength.
Conclusions: Magnesium significantly reduced the shivering threshold; however, due to the modest absolute reduction, this finding is considered to be clinically unimportant for induction of therapeutic hypothermia.
PMCID: PMC1361806  PMID: 15749735
Magnesium; Temperature; Thermoregulation; Therapeutic hypothermia; Brain protection; Cardiac protection; Shivering

Results 1-2 (2)