PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Design and testing for clinical trials faced with misclassified causes of death 
Biostatistics (Oxford, England)  2010;11(3):546-558.
With clinical trials under pressure to produce more convincing results faster, we reexamine relative efficiencies for the semiparametric comparison of cause-specific rather than all-cause mortality events, observing that in many settings misclassification of cause of failure is not negligible. By incorporating known misclassification rates, we derive an adapted logrank test that optimizes power when the alternative treatment effect is confined to the cause-specific hazard. We derive sample size calculations for this test as well as for the corresponding all-cause mortality and naive cause-specific logrank test which ignores the misclassification. This may lead to new options at the design stage which we discuss. We reexamine a recently closed vaccine trial in this light and find the sample size needed for the new test to be 32% smaller than for the equivalent all-cause analysis, leading to a reduction of 41 224 participants.
doi:10.1093/biostatistics/kxq011
PMCID: PMC2883300  PMID: 20212319
Cause-specific analysis; Clinical trials; Competing risks; Misclassification; Sample size; Survival analysis; Verbal autopsy
2.  A structural mean model to allow for noncompliance in a randomized trial comparing 2 active treatments 
Biostatistics (Oxford, England)  2010;12(2):247-257.
We propose a structural mean modeling approach to obtain compliance-adjusted estimates for treatment effects in a randomized-controlled trial comparing 2 active treatments. The model relates an individual's observed outcome to his or her counterfactual untreated outcome through the observed receipt of active treatments. Our proposed estimation procedure exploits baseline covariates that predict compliance levels on each arm. We give a closed-form estimator which allows for differential and unexplained selectivity (i.e. noncausal compliance-outcome association due to unobserved confounding) as well as a nonparametric error distribution. In a simple linear model for a 2-arm trial, we show that the distinct causal parameters are identified unless covariate-specific expected compliance levels are proportional on both treatment arms. In the latter case, only a linear contrast between the 2 treatment effects is estimable and may well be of key interest. We demonstrate the method in a clinical trial comparing 2 antidepressants.
doi:10.1093/biostatistics/kxq053
PMCID: PMC3062146  PMID: 20805286
Causal inference; Randomized-controlled trials; Structural mean models

Results 1-2 (2)