Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
more »
Year of Publication
1.  Correlations from gadopentetate dimeglumine-enhanced magnetic resonance imaging after methotrexate chemotherapy for hemorrhagic placenta increta 
To describe pre- and post-methotrexate (MTX) therapy images from pelvic magnetic resonance imaging (MRI) with gadopentetate dimeglumine contrast following chemotherapy for post-partum hemorrhage secondary to placenta increta.
Material and method
A 28-year-old Caucasian female presented 4 weeks post-partum complaining of intermittent vaginal bleeding. She underwent dilatation and curettage immediately after vaginal delivery for suspected retained placental tissue but 28 d after delivery, the serum β-hCG persisted at 156 IU/mL. Office transvaginal sonogram (4 mHz B-mode) was performed, followed by pelvic MRI using a 1.5 Tesla instrument after administration of gadolinium-based contrast agent. MTX was administered intramuscularly, and MRI was repeated four weeks later.
While transvaginal sonogram suggested retained products of conception confined to the endometrial compartment, an irregular 53 × 34 × 28 mm heterogeneous intrauterine mass was noted on MRI to extend into the anterior myometrium, consistent with placenta increta. Vaginal bleeding diminished following MTX treatment, with complete discontinuation of bleeding achieved by ~20 d post-injection. MRI using identical technique one month later showed complete resolution of the uterine lesion. Serum β-hCG was <5 IU/mL.
Reduction or elimination of risks associated with surgical management of placenta increta is important to preserve uterine function and reproductive potential. For selected hemodynamically stable patients, placenta increta may be treated non-operatively with MTX as described here. A satisfactory response to MTX can be ascertained by serum hCG measurements with pre- and post-treatment pelvic MRI with gadopentetate dimeglumine enhancement, which offers advantages over standard transvaginal sonography.
PMCID: PMC280697  PMID: 14617375
magnetic resonance imaging; placenta increta; methotrexate
2.  Application of magnetic techniques in the field of drug discovery and biomedicine 
Magnetic separation technology, using magnetic particles, is quick and easy method for sensitive and reliable capture of specific proteins, genetic material and other biomolecules. The technique offers an advantage in terms of subjecting the analyte to very little mechanical stress compared to other methods. Secondly, these methods are non-laborious, cheap and often highly scalable. Moreover, techniques employing magnetism are more amenable to automation and miniaturization. Now that the human genome is sequenced and about 30,000 genes are annotated, the next step is to identify the function of these individual genes, carrying out genotyping studies for allelic variation and SNP analysis, ultimately leading to identification of novel drug targets. In this post-genomic era, technologies based on magnetic separation are becoming an integral part of todays biology laboratory. This article briefly reviews the selected applications of magnetic separation techniques in the field of biotechnology, biomedicine and drug discovery.
PMCID: PMC212320  PMID: 14521720

Results 1-3 (3)