PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Tsga10 Encodes a 65-Kilodalton Protein That Is Processed to the 27-Kilodalton Fibrous Sheath Protein1 
Biology of reproduction  2003;70(3):608-615.
We had previously reported the isolation of the testis-specific human gene Tsga10, which is not expressed in testes from two infertile patients. To study its role and function, we cloned the mouse homologue Mtsga10. Mtsga10 localizes to mouse chromosome 1, band B. This region is syntenic with human chromosome 2q11.2, where Tsga10 is located. We demonstrate that Mtsga10 mRNA is expressed in testis, but not in other adult tissues, and in several human fetal tissues and primary tumors. We uncovered that different species use different first exons and, consequently, different promoters. Using several antibodies, we discovered that, in mouse testis, Mtsga10 encodes a 65-kDa spermatid protein that appears to be processed to a 27-kDa protein of the fibrous sheath, a major sperm tail structure, in mature spermatozoa. Mtsga10 protein contains a putative myosin/Ezrin/radixin/moesin (ERM) domain. Transfection of fibroblasts with GFP-Mtsga10 fusion protein results in formation of short, thick filaments and deletion of the myosin/ERM domain abolished filament formation. Our results suggest the possibility that Tsga10 plays a role in the sperm tail fibrous sheath.
doi:10.1095/biolreprod.103.021170
PMCID: PMC3158800  PMID: 14585816 CAMSID: cams1890
developmental biology; spermatid; spermatogenesis; testis
2.  Novel RING Finger Protein OIP1 Binds to Conserved Amino Acid Repeats in Sperm Tail Protein ODF11 
Biology of reproduction  2003;68(2):543-552.
Outer dense fibers (ODFs) and the fibrous sheath (FS) are unique structures of the mammalian sperm tail. Recently, progress has been made in the molecular cloning of ODF and FS proteins, and because of this, questions addressing the morphogenesis and underlying protein network that make up sperm tail structures and their function can now be addressed. Using the N-terminal leucine zipper motif of the major ODF protein ODF1, we had previously isolated interacting proteins Odf2, Spag4, and Spag5. We report here a yeast two-hybrid strategy to isolate a novel rat testicular protein, OIP1, that binds to the evolutionarily conserved Cys-Gly-Pro repeats in the C-terminus of ODF1. OIP1 is expressed in round spermatids as well as in spermatocytes and several somatic tissues, albeit at a lower level. No expression was detectable in epididymis, heart, and smooth muscle. OIP1 protein localizes to the sperm tail in a pattern expected for an ODF1-interacting protein. OIP1 belongs to the family of RING finger proteins of the H2 subclass. Deletion of the putative RING motif significantly decreased binding to ODF1. Genomic analysis of rat Oip1 and Oip1 homologs indicates that Oip1 is highly conserved. Oip1 is subject to differential splicing and alternative polyadenylation events. It is interesting that Oip1 mRNAs have been reported that lack the exon encoding the putative RING finger.
PMCID: PMC3158802  PMID: 12533418 CAMSID: cams1885
developmental biology; gamete biology; gametogenesis; spermatogenesis; testis
3.  Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior 
Biology of reproduction  2003;69(5):1449-1457.
Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior.
doi:10.1095/biolreprod.103.019364
PMCID: PMC2683359  PMID: 12855594
behavior; hypothalamus; neuroendocrinology; steroid hormone receptors
4.  Hierarchical Phenotypic and Epigenetic Variation in Cloned Swine1 
Biology of reproduction  2003;69(2):430-436.
Cloning by somatic cell nuclear transfer can result in the birth of animals with phenotypic and gene expression abnormalities. We compared adult cloned pigs and adult pigs from naturally bred control females using a series of physiological and genetic parameters, including detailed methylation profiles of selected genomic regions. Phenotypic and genetic analyses indicated that there are two classes of traits, one in which the cloned pigs have less variation than controls and another characterized by variation that is equally high in cloned and control pigs. Although cloning creates animals within the normal phenotypic range, it increases the variability associated with some traits. This finding is contrary to the expectation that cloning can be used to reduce the size of groups involved in animal experimentation and to reproduce an animal, including a pet, with a homogenous set of desired traits.
doi:10.1095/biolreprod.103.016147
PMCID: PMC2637358  PMID: 12700187
assisted reproductive technology; developmental biology; embryo; gene regulation

Results 1-4 (4)