Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  Synthesis and Characterization of bis[(2-ethyl-5-methyl-imidazo-4-yl)methyl]Sulfide and Its Coordination Behavior toward Cu(II) as a Possible Approach of a Copper Site Type I 
The synthesis and characterization of a novel ligand, bis[(2-ethyl-5-methyl-imidazo-4-yl)methyl]sulfide (bemims), as well as a bemims-containing copper(II) coordination complex are described. In this complex, [Cu(bemims)X2] with X = NO3−, bemims acts as a tridentate ligand and two monodentate nitrate ions complete the coordination sphere. Both imidazole N atoms and the thioether S atom of bemims participate in coordination. The Cu(II) ion is five-coordinated with a slightly distorted square-pyramidal geometry (τ = .09). Electrochemical studies and spectroscopic data for this complex are compared with some blue copper proteins in order to assess its ability to mimic the copper center of type I copper proteins.
PMCID: PMC2705856  PMID: 19587830
2.  Synthesis, Characterization, and Biological Activity Studies of Copper(II) Mixed Compound with Histamine and Nalidixic Acid 
A mixed copper complex with deprotonated nalidixic acid (nal) and histamine (hsm) was synthesized and characterized by FTIR, UV-Vis, elemental analysis, and conductivity. The crystal structure of [Cu(hsm)(nal)H2O]Cl·3H2O (chn) showed a pentacoordinated cooper(II) in a square pyramidal geometry surrounded by two N atoms from hsm, two O atoms from the quinolone, and one apical water oxygen. Alteration of bacterial DNA structure and/or associated functions in vivo by [Cu(hsm)(nal)H2O]Cl·3H2O was demonstrated by the induction of a recA-lacZ fusion integrated at the amyE locus of a recombinant Bacillus subtilis strain. Results from circular dichroism and denaturation of calf thymus DNA (CT-DNA) suggested that increased amounts of copper complex were able to stabilize the double helix of DNA in vitro mainly by formation of hydrogen bonds between chn and the sugars of DNA minor groove. In vivo and in vitro biological activities of the chn complex were compared with the chemical nuclease [Cu(phen)(nal)H2O]NO3 · 3H2O (cpn) where phen is phenanthroline.
PMCID: PMC2699492  PMID: 19557138
3.  Degradation of Single Stranded Nucleic Acids by the Chemical Nuclease Activity of the Metal Complex [Cu(phen)(nal)]+  
The chemical design of metal complexes of the type [Cu(phen)(antib)]+ (where antib is a quinolone or a fluoroquinolone) has been carried out in an approach to better understand how the coordination of their components affect the activity of quinolones. The ability of [Cu(phen)(nal)]+ to interact with DNA in vivo and its capacity to promote the degradation of plasmid and chromosomal DNA, under reductive conditions has been previously reported. However whether this compound utilizes other intracellular targets to promote bacterial killing was a question that deserved to be answered. In this paper, the studies of the chemical nuclease properties encoded by the metal complex [Cu(phen)(nal)]+ were extended by using different types of single chain nucleic acids, i.e, ribosomal and tumor mosaic virus RNAs as well as poly-dA-dT. Our results showed that degradation of the nucleic acids occurred only under reductive conditions. Although MPA and [3-mercaptoethanol were the chemical reducers that best assisted the nuclease reaction, other biological compounds such as citric and succinic acid also were shown to act like reducers in that reaction. All.hough the nuclease activity of [Cu(phen)(nal)]+ was comparable to that exhibited by bis copper phenanthroline [Cu(phen)z]2+our results showed that none of the individual components of [Cu(phen)(nal)]+ was able to promote the degradation of either the RNAs or poly(dA-dT). These results strongly support the hypothesis that the metal complex [Cu(phen)(nal)] uses not only DNA but also RNA as targets to promote bacterial killing.
PMCID: PMC2267041  PMID: 18365040

Results 1-3 (3)