PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application 
In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution.
doi:10.1155/2012/173819
PMCID: PMC3368164  PMID: 22693485
2.  Biosorption of Lanthanides from Aqueous Solutions Using Pretreated Buccinum tenuissimum Shell Biomass 
Biosorption experiment from aqueous solutions containing known amount of rare earth elements (REEs) using pre-treated Buccinum tenuissimum shell was explored to evaluate the efficiency of shell biomass as sorbent for REEs. In this work, four kinds of sieved shell samples: (a) “Ground original sample”, (b) “Heat-treatment (480°C, 6 hours) sample”, (c) “Heat-treatment (950°C, 6 hours) sample” and (d) “Heat-treatment (950°C, 6 hours) and water added sample” were used. Furthermore, to confirm the characteristics of the shell biomass, the crystal structure, the surface morphology, and the specific surface area of these shell samples were determined. Consequently, the following matters have been mainly clarified. (1) The crystal structure of the shell biomass was transformed from aragonite (CaCO3) into calcite (CaCO3) phase by heat-treatment (480°C, 6 hours); then mainly transformed into calcium oxide (CaO) by heat-treatment (950°C, 6 hours), and calcium hydroxide (Ca(OH)2) by heat-treatment (950°C, 6 hours) and adding water. (2) The shell biomass showed excellent sorption capacity for lanthanides. (3) Adsorption isotherms using the shell biomass can be described by Langmuir and Freundlich isotherms satisfactorily for lanthanides except “heat-treatment (950°C, 6 hours) sample”. (4) Shell biomass (usually treated as waste material) can be an efficient sorbent for lanthanides in future.
doi:10.1155/2010/804854
PMCID: PMC2963800  PMID: 20981250
3.  Biosorption of Uranium and Rare Earth Elements Using Biomass of Algae 
In order to investigate the behavior of rare earth elements (REEs) and uranium (U) in marine organism, the concentrations of REEs and U in some brown algae samples taken on the coast of Niigata Prefecture were determined. In addition, laboratory model experiment to uptake these elements using living and dried algae (Undaria pinnatifida and Sargassum hemiphyllum) was also carried out to survey the uptake and bioaccumulation mechanism of REEs and U in algae. Consequently, the following matters have been mainly clarified. (1) The order of the concentration of REEs for each organ in Sargassum hemiphyllum is “main branch” > “leaf” > “vesicle,” however for U, the order is “leaf” > “vesicle” > “main branch.” (2) The concentration of REEs in Sargassum hemiphyllum may be strongly affected by suspended solid in seawater. (3) The uptake and/or accumulate mechanism of REEs in brown algae may be different from that of U.
doi:10.1155/2008/706240
PMCID: PMC2593843  PMID: 19081786

Results 1-3 (3)