PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines 
The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.).
doi:10.1155/2013/524701
PMCID: PMC3874341  PMID: 24391528
2.  Synthesis, Characterization And Antitumor Activity Of Copper(II) Complexes, [CuL2] [HL1-3=N,N-Diethyl-N'-(R-Benzoyl)Thiourea (R=H, o-Cl and p-NO2)] 
The copper (II) complexes (CuL2) were prepared by reaction of Cu(CH3COO)2 with the corresponding derivatives of acylthioureas in a Cu:HL molar ratio of 1:2. Acylthiourea ligands, N,N-diethyl-N'-(R-benzoyl) thiourea (HL1-3) [R=H, o-Cl and p-NO2] were synthesized in high yield (78-83%) and characterized by elemental analysis, infrared spectroscopy, 1H and 13C NMR spectroscopy. The complexes CuL2 were characterized by elemental analysis, IR, FAB(+)-MS, magnetic susceptibility measurements, EPR and cyclic voltammetry. The crystal structure of the complex Cu(L2)2 shows a nearly square-planar geometry with two deprotonated ligands (L) coordinated to CuII through the oxygen and sulfur atoms in a cis arrangement. The antitumor activity of the copper(II) complexes with acylthiourea ligands was evaluated in vitro against the mouse mammary adenocarcinoma TA3 cell line. These complexes exhibited much higher cytotoxic activity (IC50 values in the range of 3.9-6.9 μM) than their corresponding ligands (40-240 μM), which indicates that the coordination of the chelate ligands around the CuII enhances the antitumor activity and, furthermore, this result confirmed that the participation of the nitro and chloro substituent groups in the complex activities is slightly relevant. The high accumulation of the complexes Cu(L2)2 and Cu(L3)2 in TA3 tumor cells and the much faster binding to cellular DNA than Cu(L1)2 are consistent with the in vitro cytotoxic activities found for these copper complexes.
doi:10.1155/BCA.2005.299
PMCID: PMC2267103  PMID: 18365106
Copper(II) complexes; Acylthiourea; Antitumor; cytotoxic activity; Cell growth; Cellular DNA
3.  Synthesis, Characterization, and In Vitro Cytotoxic Activities of Benzaldehyde Thiosemicarbazone Derivatives and Their Palladium (II) and Platinum (II) Complexes against Various Human Tumor Cell Lines 
The palladium (II) bis-chelate Pd (L1−3)2 and platinum (II) tetranuclear Pt4(L4)4 complexes of benzaldehyde thiosemicarbazone derivatives have been synthesized, and characterized by elemental analysis and IR, FAB(+)-mass and NMR (1H, 13C) spectroscopy. The complex Pd(L2)2 [HL2 = m-CN-benzaldehyde thiosemicarbazone] shows a square-planar geometry with two deprotonated ligands (L) coordinated to PdII through the nitrogen and sulphur atoms in a transarrangement, while the complex Pt4(L4)4 [HL4 = 4-phenyl-1-benzaldehyde thiosemicarbazone] has a tetranuclear geometry with four tridentate ligands coordinated to four PtII ions through the carbon (aromatic ring), nitrogen, and sulphur atoms where the ligands are deprotonated at the NH group. The in vitro antitumor activity of the ligands and their complexes was determined against different human tumor cell lines, which revealed that the palladium (II) and platinum (II) complexes are more cytotoxic than their ligands with IC50 values at the range of 0.07–3.67 μM. The tetranuclear complex Pt4(L4)4, with the phenyl group in the terminal amine of the ligand, showed higher antiproliferative activity (CI50 = 0.07–0.12 μM) than the other tested palladium (II) complexes.
doi:10.1155/2008/690952
PMCID: PMC2615113  PMID: 19148285
4.  Synthesis, Characterization and Antitumor Activity of cis-bis(acylthioureato) platinum(II) Complexes, cis-[PtL2] [HL1=N,N-Diphenyl-N'-Benzoylthiourea or HL2=N,N-diphenyl-N'-(p-nitrobenzoyl)thiourea] 
A low-molecular weight chromium-containing fraction of the material resulting from dichromate reduction by bovine liver homogenate was investigated by NMR and ES-MS. The ES-MS spectrum showed a readily detectable peak at m/z 786.1. The same molecular weight reasonably agreed with the relatively low diffusion coefficient measured by NMR-DOSY experiments on the main species observed in the 1H NMR spectrum. At least two downfield shifted and broad paramagnetic signals were apparent in the 1H NMR spectrum. Temperature dependence of chemical shift was exploited in order to estimate the diamagnetic shift of the signals in the diamagnetic region of the spectrum. 2D TOCSY, NOESY, COSY and 1H-13C HMQC spectra revealed the presence of aromatic protons (which were assigned as His residues), Gly and some other short chain amino-acids. Combinations of the molecular masses of such components together with acetate (which is present in the solution) and chromium atoms allowed a tentative proposal of a model for the compound.
doi:10.1155/S1565363303000219
PMCID: PMC2267062  PMID: 18365059

Results 1-4 (4)