Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  TMpro web server and web service: transmembrane helix prediction through amino acid property analysis 
Bioinformatics  2007;23(20):2795-2796.
TMpro is a transmembrane (TM) helix prediction algorithm that uses language processing methodology for TM segment identification. It is primarily based on the analysis of statistical distributions of properties of amino acids in transmembrane segments. This article describes the availability of TMpro on the internet via a web interface. The key features of the interface are: (i) output is generated in multiple formats including a user-interactive graphical chart which allows comparison of TMpro predicted segment locations with other labeled segments input by the user, such as predictions from other methods. (ii) Up to 5000 sequences can be submitted at a time for prediction. (iii) TMpro is available as a web server and is published as a web service so that the method can be accessed by users as well as other services depending on the need for data integration.
PMCID: PMC3263380  PMID: 17724062
2.  iGNM: a database of protein functional motions based on Gaussian Network Model 
Bioinformatics (Oxford, England)  2005;21(13):2978-2987.
The knowledge of protein structure is not sufficient for understanding and controlling its function. Function is a dynamic property. Although protein structural information has been rapidly accumulating in databases, little effort has been invested to date toward systematically characterizing protein dynamics. The recent success of analytical methods based on elastic network models, and in particular the Gaussian Network Model (GNM), permits us to perform a high-throughput analysis of the collective dynamics of proteins.
We computed the GNM dynamics for 20 058 structures from the Protein Data Bank, and generated information on the equilibrium dynamics at the level of individual residues. The results are stored on a web-based system called i GNM and configured so as to permit the users to visualize or download the results through a standard web browser using a simple search engine. Static and animated images for describing the conformational mobility of proteins over a broad range of normal modes are accessible, along with an online calculation engine available for newly deposited structures. A case study of the dynamics of 20 non-homologous hydrolases is presented to illustrate the utility of the iGNM database for identifying key residues that control the cooperative motions and revealing the connection between collective dynamics and catalytic activity.
PMCID: PMC1752228  PMID: 15860562

Results 1-2 (2)