PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  A Statistical Method without Training Step for the Classification of Coding Frame in Transcriptome Sequences 
In this study, we investigated the modalities of coding open reading frame (cORF) classification of expressed sequence tags (EST) by using the universal feature method (UFM). The UFM algorithm is based on the scoring of purine bias (Rrr) and stop codon frequencies. UFM classifies ORFs as coding or non-coding through a score based on 5 factors: (i) stop codon frequency; (ii) the product of the probabilities of purines occurring in the three positions of nucleotide triplets; (iii) the product of the probabilities of Cytosine (C), Guanine (G), and Adenine (A) occurring in the 1st, 2nd, and 3rd positions of triplets, respectively; (iv) the probabilities of a G occurring in the 1st and 2nd positions of triplets; and (v) the probabilities of a T occurring in the 1st and an A in the 2nd position of triplets. Because UFM is based on primary determinants of coding sequences that are conserved throughout the biosphere, it is suitable for cORF classification of any sequence in eukaryote transcriptomes without prior knowledge. Considering the protein sequences of the Protein Data Bank (RCSB PDB or more simply PDB) as a reference, we found that UFM classifies cORFs of ≥200 bp (if the coding strand is known) and cORFs of ≥300 bp (if the coding strand is unknown), and releases them in their coding strand and coding frame, which allows their automatic translation into protein sequences with a success rate equal to or higher than 95%. We first established the statistical parameters of UFM using ESTs from Plasmodium falciparum, Arabidopsis thaliana, Oryza sativa, Zea mays, Drosophila melanogaster, Homo sapiens and Chlamydomonas reinhardtii in reference to the protein sequences of PDB. Second, we showed that the success rate of cORF classification using UFM is expected to apply to approximately 95% of higher eukaryote genes that encode for proteins. Third, we used UFM in combination with CAP3 to assemble large EST samples into cORFs that we used to analyze transcriptome phenotypes in rice, maize, and humans. We discuss the error rate and the interference of noisy sequences such as pseudogenes, transposons, and retrotransposons. This method is suitable for rapid cORF extraction from transcriptome data and allows correct description of the genome phenotypes of plant genomes without prior knowledge. Additional care is necessary when addressing the human transcriptome due to the interference caused by large amounts of noisy sequences. UFM can be regarded as a low complexity tool for prior knowledge extraction concerning the coding fraction of the transcriptome of any eukaryote. Due to its low level of complexity, UFM is also very robust to variations of codon usage.
doi:10.4137/BBI.S10053
PMCID: PMC3561939  PMID: 23400232
genomics; RNY; EST; ORF; CDS; UFM; classification
2.  Classifying Coding DNA with Nucleotide Statistics 
In this report, we compared the success rate of classification of coding sequences (CDS) vs. introns by Codon Structure Factor (CSF) and by a method that we called Universal Feature Method (UFM). UFM is based on the scoring of purine bias (Rrr) and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i) the stop codon distribution, (ii) the product of purine probabilities in the three positions of nucleotide triplets, (iii) the product of Cytosine (C), Guanine (G), and Adenine (A) probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv) the probabilities of G in 1st and 2nd position of triplets and (v) the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives) of Homo sapiens (>250 bp), Drosophila melanogaster (>250 bp) and Arabidopsis thaliana (>200 bp) are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.
PMCID: PMC2808172  PMID: 20140062
genomics; universal correlation; purines bias; coding features; open reading frame; ancestral codon
3.  Universal Features for the Classification of Coding and Non-coding DNA Sequences 
In this report, we revisited simple features that allow the classification of coding sequences (CDS) from non-coding DNA. The spectrum of codon usage of our sequence sample is large and suggests that these features are universal. The features that we investigated combine (i) the stop codon distribution, (ii) the product of purine probabilities in the three positions of nucleotide triplets, (iii) the product of Cytosine, Guanine, Adenine probabilities in 1st, 2nd, 3rd position of triplets, respectively, (iv) the product of G and C probabilities in 1st and 2nd position of triplets. These features are a natural consequence of the physico-chemical properties of proteins and their combination is successful in classifying CDS and non-coding DNA (introns) with a success rate >95% above 350 bp. The coding strand and coding frame are implicitly deduced when the sequences are classified as coding.
PMCID: PMC2808180  PMID: 20140069
genomics; exon prediction; purine bias; coding features; open reading frame; ancestral codon

Results 1-3 (3)