Search tips
Search criteria

Results 1-25 (28)

Clipboard (0)
Year of Publication
Document Types
1.  Hook1, microtubules, and Rab22 
Bioarchitecture  2013;3(5):141-146.
Clathrin-independent endocytosis (CIE) mediates the internalization of many plasma membrane (PM) proteins involved in homeostasis, immune response, and signaling. CIE cargo molecules are internalized independent of clathrin, and dynamin, and modulated by the small G protein Arf6. After internalization the CIE cargo proteins either follow a default pathway of trafficking to lysosomes for degradation or follow a pathway where they are routed directly to the recycling endosomes for return to the PM. The selective endosomal sorting of molecules like CD44, CD98, and CD147, which are involved in cell-cell and cell-extracellular interactions, indicates that sorting mechanisms dictate the post-endocytic fate of CIE cargo proteins. In a recent study, we identified sorting signals that specify the endosomal trafficking of CIE cargo proteins and uncover a role for Hook1 as an endosomal cargo adaptor that routes CIE cargo to the recycling endosomes. Furthermore, we found that Hook1, microtubules, and Rab22a work in coordination to directly recycle the cargo and facilitate cell spreading. Here, we discuss our current view on the endosomal sorting of CIE cargo proteins and their molecular regulators.
PMCID: PMC3907461  PMID: 24284901
clathrin-independent endocytosis; Hook1; Rab22a; Rab22; microtubules; endosomal sorting; sorting signals; recycling; basigin; CD147
2.  The vacuole within 
Bioarchitecture  2013;3(3):64-68.
The notochord is an evolutionarily conserved structure that has long been known to play an important role in patterning during embryogenesis. Structurally, the notochord is composed of two cell layers: an outer epithelial-like sheath, and an inner core of cells that contain large fluid-filled vacuoles. We have recently shown these notochord vacuoles are lysosome-related organelles that form through Rab32a and vacuolar-type proton-ATPase-dependent acidification. Disruption of notochord vacuoles results in a shortened embryo along the anterior-posterior axis. Interestingly, we discovered that notochord vacuoles are also essential for proper spine morphogenesis and that vacuole defects lead to scoliosis of the spine. Here we discuss the cellular organization of the notochord and how key features of its architecture allow the notochord to function in embryonic axis elongation and spine formation.
PMCID: PMC3782541  PMID: 23887209
zebrafish; notochord vacuole; lysosome-related organelle; axis elongation; spine formation; scoliosis
3.  BioArchitecture 
Bioarchitecture  2012;2(6):200-203.
BioArchitecture is a term used to describe the organization and regulation of biological space. It applies to the principles which govern the structure of molecules, polymers and mutiprotein complexes, organelles, membranes and their organization in the cytoplasm and the nucleus. It also covers the integration of cells into their three dimensional environment at the level of cell-matrix, cell-cell interactions, integration into tissue/organ structure and function and finally into the structure of the organism. This review will highlight studies at all these levels which are providing a new way to think about the relationship between the organization of biological space and the function of biological systems.
PMCID: PMC3527313  PMID: 23267413
actin; cytoskeleton; microtubules; intermediate filaments; nuclear structure; protein folding; isoform sorting
4.  The actin cytoskeleton as a sensor and mediator of apoptosis 
Bioarchitecture  2012;2(3):75-87.
Apoptosis is an important biological process required for the removal of unwanted or damaged cells. Mounting evidence implicates the actin cytoskeleton as both a sensor and mediator of apoptosis. Studies also suggest that actin binding proteins (ABPs) significantly contribute to apoptosis and that actin dynamics play a key role in regulating apoptosis signaling. Changes in the organization of the actin cytoskeleton has been attributed to the process of malignant transformation and it is hypothesized that remodeling of the actin cytoskeleton may enable tumor cells to evade normal apoptotic signaling. This review aims to illuminate the role of the actin cytoskeleton in apoptosis by systematically analyzing how actin and ABPs regulate different apoptosis pathways and to also highlight the potential for developing novel compounds that target tumor-specific actin filaments.
PMCID: PMC3414384  PMID: 22880146
actin; apoptosis; actin binding proteins; mitochondria; Bcl-2; cancer; multi-drug resistance
5.  Scaffold remodeling in space and time controls synaptic transmission 
Bioarchitecture  2012;2(2):29-32.
Scaffolding proteins that are associated with glutamate receptors in dendritic spines govern the location and function of receptors to control synaptic transmission. Unraveling the spatio-temporal dynamics of protein-protein interactions within components of the scaffolding complex will bring to light the function of these interactions. Combining bioluminescence resonance energy transfer (BRET) imaging to electrophysiological recordings, we have recently shown that GKAP, a core protein of the scaffolding complex, interacts with DLC2, a protein associated with molecular motors. Synaptic activity-induced GKAP-DLC2 interaction in spines stabilizes the scaffolding complex and enhances the NMDA currents. Interestingly, this work placed emphasis on the bioarchitectural dependence of protein-protein interaction dynamics. Depending on physiological conditions, the modulation in space and time of protein-protein interaction is acutely regulated, engendering a subtle control of synaptic transmission in the state of the individual synapse.
PMCID: PMC3383718  PMID: 22754626
bioluminescence resonance energy transfer (BRET); dendritic spine; dynein light chain 2 (DLC2); glutamate receptors; guanylate kinase-associated protein (GKAP); protein-protein interaction; scaffolding proteins; synaptic transmission
6.  Staging a recovery from mitotic arrest 
Bioarchitecture  2012;2(2):33-37.
Checkpoint controls, the surveillance pathways that impose “an order of execution” on the major cell cycle events, are critical to the maintenance of genome stability. When cells fail to execute a cellular event or do so erroneously due to misregulation or exposure to genotoxic stresses, these evolutionarily conserved regulatory circuits prevent passage to the subsequent event, thus bringing the cell cycle to a halt. Once the checkpoint stimulus is removed, cells recover from the arrest and eventually resume cell cycle progression. While the activation, execution and maintenance, the three major aspects of the checkpoint controls, have been investigated in detail, the recovery process remains underexplored. It is not clear if cells recover passively upon dissipation of the checkpoint signals or require an active participation by specific effectors. A recent study in the yeast Saccharomyces cerevisiae uncovered two previously unsuspected functions of Cdk1 in efficient recovery from the spindle assembly checkpoint (SAC) imposed arrest. An inability to fulfil these requirements in the absence of Cdk1 makes it virtually impossible for cells to recover from the mitotic arrest. Given the conserved nature of the SAC, these findings may have implications for vertebrate cells.
PMCID: PMC3383719  PMID: 22754627
Cdk1; cell cycle; cell division; checkpoint; mitosis; recovery; spindle; yeast
7.  A pathogen’s journey in the host cell 
Bioarchitecture  2012;2(2):38-42.
Manipulation of the actin cytoskeleton is a commonly used process by which bacterial pathogens and viruses are able to neutralize host defense mechanisms and subvert them in order to replicate in a hostile environment. Diverse bacteria display a wide array of mechanisms of regulation of microfilaments to enter, move within or exit the host cell. A less studied subject is how pathogens may co-opt the actin cytoskeleton to disturb vesicle trafficking pathways, namely phagolysosomal fusion, and avoid degradation. In fact, although actin plays a role in endosomal trafficking and phagosome maturation, the knowledge on the exact mechanisms and additional players is still scarce. Recently, we found that the Legionella pneumophila virulence factor VipA is an actin nucleator, associates with actin filaments and early endosomes during infection, and interferes in yeast organelle trafficking pathways, suggesting it may be linking actin dynamics to endosome biogenesis. Further studies on this protein, together with work on other bacterial effectors, may help shed light in the role of actin in endosomal maturation.
PMCID: PMC3383720  PMID: 22754628
Legionella pneumophila; Type IV Secretion System; VipA; actin; effector; multivesicular body; organelle trafficking
8.  A new role of multi scaffold protein Liprin-α 
Bioarchitecture  2012;2(2):43-49.
Regulation of the actin cytoskeleton is crucial for cell morphology and migration. One of the key molecules that regulates actin remodeling is the small GTPase Rho. Rho shuttles between the inactive GDP-bound form and the active GTP-bound form, and works as a molecular switch in actin remodeling in response to both extra- and intra-cellular stimuli. Mammalian homolog of Diaphanous (mDia) is one of the Rho effectors and produces unbranched actin filaments. While Rho GTPases activate mDia, the mechanisms of how the activity of mDia is downregulated in cells remains largely unknown. In our recent paper, we identified Liprin-α as an mDia interacting protein and found that Liprin-α negatively regulates the activity of mDia in the cell by displacing it from the plasma membrane through binding to the DID-DD region of mDia. Here, we review these findings and discuss how Liprin-α regulates the Rho-mDia pathway and how the mDia-Liprin-α complex functions in vivo.
PMCID: PMC3383721  PMID: 22754629
Liprin; Rho; actin cytoskeleton; formin; mDia
9.  Axonemal radial spokes 
Bioarchitecture  2012;2(2):50-58.
The radial spoke (RS) is a complex of at least 23 proteins that works as a mechanochemical transducer between the central‐pair apparatus and the peripheral microtubule doublets in eukaryotic flagella and motile cilia. The RS contributes to the regulation of the activity of dynein motors, and thus to flagellar motility. Despite numerous biochemical, physiological and structural studies, the mechanism of the function of the radial spoke remains unclear. Detailed knowledge of the 3D structure of the RS protein complex is needed in order to understand how RS regulates dynein activity. Here we review the most important findings on the structure of the RS, including results of our recent cryo‐electron tomographic analysis of the RS protein complex.
PMCID: PMC3383722  PMID: 22754630
axoneme; cilia; cryo‐electron tomography; dynein; flagella; motility; radial spokes
10.  BioArchitecture  
Bioarchitecture  2012;2(1):1.
Volume 1 has defined the scope of BioArchitecture. From the outset we have strived to ensure that BioArchitecture is not limited to the three major polymer systems of the cytoplasm. I am happy to say that a cursory glance at the contents of volume 1 makes it clear that we are interested in all aspects of bioarchitecture from molecules to polymers to cells to tissue to the organism.
PMCID: PMC3383710  PMID: 22754619
11.  Releasing the brakes while hanging on 
Bioarchitecture  2012;2(1):11-14.
Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.
PMCID: PMC3383711  PMID: 22754622
Arp2/3 complex; WASP-VCA; actin-based motility; cortactin; friction-like force; propulsion velocity
12.  Signaling network from GPCR to the actin cytoskeleton during chemotaxis 
Bioarchitecture  2012;2(1):15-18.
Chemotaxis is crucial for many physiological processes including the recruitment of leukocytes to sites of infection, trafficking of lymphocytes in the human body, and metastasis of cancer cells. A family of small proteins, chemokines, serves as the signals, and a family of G-protein coupled receptors (GPCRs) detects chemokines and direct cell migration. One of the basic questions in chemotaxis of eukaryotes is how a GPCR transduces signals to control the assembly of the actin network that generates directional force for cell migration. Over the past decade, a variety of signaling components have been implicated to transduce the GPCR signaling to the actin cytoskeleton. Studies in a lower eukaryotic organism, Dictyostelium discoideum, have allowed us to discover evolutionary conversed components involved in the GPCR-controlled actin network during chemotaxis. However, complete pathways linking GPCR to the actin network are still far from clear. Here we first summarize the previous studies on these components, and then update with our finding showing a new pathway, consisting of a GPCR, Gβγ, Elmo/Dock, Rac and Arp2/3 and actin. We suggest that this pathway serves as a direct linkage between the GPCR/G-protein, the chemoattractant sensing machinery, and the actin cytoskeleton, the machinery of cell movement during chemotaxis of eukaryotic cells.
PMCID: PMC3383712  PMID: 22754623
Dictyostelium; Dock; Elmo; GPCR; actin; chemotaxis; cytoskeleton; signaling
13.  STARD9/Kif16a is a novel mitotic kinesin and antimitotic target 
Bioarchitecture  2012;2(1):19-22.
Proper cell division requires the formation of the microtubule-based mitotic spindle, which mediates the dynamic movement and alignment of chromosomes to the metaphase plate and their equal transmission to daughter cells. Kinesins are molecular motors that utilize ATP hydrolysis to perform their functions and are instrumental in spindle assembly and function. Of the over 45 kinesins encoded in the human genome, only two are specifically enriched at the centrioles, Kif24 at the mother centriole and STARD9/Kif16a at the daughter centriole. While Kif24 possesses centriolar microtubule-depolymerizing activity and has been implicated in regulating cilia formation, our recent study implicates STARD9 in maintaining pericentriolar material (PCM) cohesion during early mitosis. However, very little is known about how STARD9 performs its function, including the mechanisms that recruit or retain STARD9 at the centrioles and how it cooperates with centrosome components to regulate PCM stability. Additionally, the signals leading to apoptosis in the absence of STARD9 remain to be explored.
PMCID: PMC3383713  PMID: 22754624
Kif16a; STARD9; cancer target; cell division; centrosomes; kinesin; microtubules; mitosis; spindle assembly
14.  The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication 
Bioarchitecture  2012;2(1):23-27.
The accurate and timely transmission of the genetic material to progeny during successive rounds of cell division is sine qua non for the maintenance of genome stability. Eukaryotic cells have evolved a surveillance mechanism, the mitotic spindle assembly checkpoint (SAC), to prevent premature advance to anaphase before every chromosome is properly attached to microtubules of the mitotic spindle. The architecture of the KNL1-BubR1 complex reveals important features of the molecular recognition between SAC components and the kinetochore. The interaction is important for a functional SAC as substitution of BubR1 residues engaged in KNL1 binding impaired the SAC and BubR1 recruitment into checkpoint complexes in stable cell lines. Here we discuss the implications of the disorder-to-order transition of KNL1 upon BubR1 binding for SAC signaling and propose a mechanistic model of how BUBs binding may affect the recognition of KNL1 by its other interacting partners.
PMCID: PMC3383715  PMID: 22754625
Bub1; BubR1; BubR1-Blinkin complex; BubR1-KNL1; KNL1; chromosome instability; kinetochore; mitosis; spindle assembly checkpoint; tetratricopeptide repeat motif
15.  Nucleosome assembly and genome integrity 
Bioarchitecture  2012;2(1):6-10.
Maintaining the stability of the replication forks is one of the main tasks of the DNA damage response. Specifically, checkpoint mechanisms detect stressed forks and prevent their collapse. In the published report reviewed here we have shown that defective chromatin assembly in cells lacking either H3K56 acetylation or the chromatin assembly factors CAF1 and Rtt106 affects the integrity of advancing replication forks, despite the presence of functional checkpoints. This loss of replication intermediates is exacerbated in the absence of Rad52, suggesting that collapsed forks are rescued by homologous recombination and providing an explanation for the accumulation of recombinogenic DNA damage displayed by these mutants. These phenotypes mimic those obtained by a partial reduction in the pool of available histones and are consistent with a model in which defective histone deposition uncouples DNA synthesis and nucleosome assembly, thus making the fork more susceptible to collapse. Here, we review these findings and discuss the possibility that defects in the lagging strand represent a major source of fork instability in chromatin assembly mutants.
PMCID: PMC3383716  PMID: 22754621
Asf1; H3K56 acetylation; Okazaki fragment; Rad27; genetic instability; homologous recombination; nucleosome assembly; replication fork
16.  Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility 
Bioarchitecture  2011;1(6):257-260.
Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environment but also modulate it for efficient adhesion formation and directional cell motility. Recently, we found that cells endocytose fibronectin (FN) and resecrete it from a late endosomal/lysosomal (LE/Lys) compartment to provide an autocrine extracellular matrix (ECM) substrate for cell motility. Branched actin assembly regulated by cortactin was required for trafficking of FN-containing vesicles from LE/Lys to the cell surface. These findings suggest a model in which migrating cells use lysosomal secretion as a versatile mechanism to modulate the ECM environment, promote adhesion assembly and enhance directional migration.
PMCID: PMC3337126  PMID: 22545176
Arp2/3 complex; branched actin; cell motility; cortactin; extracellular matrix; fibronectin; lamellipodium; late endosomal/lysosomal compartments; lysosomal secretion; migration
17.  A novel function of the cell polarity-regulating kinase PAR-1/MARK in dendritic spines 
Bioarchitecture  2011;1(6):261-266.
Dendritic spines are postsynaptic structures that receive excitatory synaptic signals from presynaptic terminals in neurons. Because the morphology of spines has been considered to be a crucial factor for the efficiency of synaptic transmission, understanding the mechanisms regulating their morphology is important for neuroscience. Actin filaments and their regulatory proteins are known to actively maintain spine morphology; recent studies have also shown an essential role of microtubules (MTs). Live imaging of the plus-ends of MTs in mature neurons revealed that MTs stochastically enter spines and mediate accumulation of p140Cap, which regulates reorganization of actin filaments. However, the molecular mechanism by which MT dynamics is controlled has remained largely unknown. A cell polarity-regulating serine/threonine kinase, partitioning-defective 1 (PAR-1), phosphorylates classical MAPs and inhibits their binding to MTs. Because the interaction of MAPs with MTs can decrease MT dynamic instability, PAR-1 is supposed to activate MT dynamics through its MAP/MT affinity-regulating kinase (MARK) activity, although there is not yet any direct evidence for this. Here, we review recent findings on the localization of PAR-1b in the dendrites of mouse hippocampal neurons, and its novel function in the maintenance of mature spine morphology by regulating MT dynamics.
PMCID: PMC3337127  PMID: 22545177
dendritic spine; microtubule associated proteins; microtubule dynamics; microtubule plus-end tracking proteins; partition defective 1/microtubule affinity-regulating kinase; partitioning-defective protein–atypical protein kinase C system
18.  Microtubule dynamics in the peripheral nervous system 
Bioarchitecture  2011;1(6):267-270.
The special architecture of neurons in the peripheral nervous system, with axons extending for long distances, represents a major challenge for the intracellular transport system. Two recent studies show that mutations in the small heat shock protein HSPB1, which cause an axonal type of Charcot-Marie-Tooth (CMT) neuropathy, affect microtubule dynamics and impede axonal transport. Intriguingly, while at presymptomatic age the neurons in the mutant HSPB1 mouse show a hyperstable microtubule network, at postsymptomatic age, the microtubule network completely lost its stability as reflected by a marked decrease in tubulin acetylation levels. We here propose a model explaining the role of microtubule stabilization and tubulin acetylation in the pathogenesis of HSPB1 mutations.
PMCID: PMC3337128  PMID: 22545178
Charcot-Marie-Tooth; HSP27; HSPB1; microtubule dynamics; microtubule stabilization; neurodegeneration; peripheral nervous system; Peripheral neuropathy; tubulin acetylation
19.  Microfluidics pushes forward microscopy analysis of actin dynamics 
Bioarchitecture  2011;1(6):271-276.
Actin filaments, an essential part of the cytoskeleton, drive various cell processes, during which they elongate, disassemble and form different architectures. Over the past 30 years, the study of actin dynamics has relied mainly on bulk solution measurements, which revealed the kinetics and thermodynamics of actin self-assembly at barbed and pointed ends, its control by ATP hydrolysis and its regulation by proteins binding either monomeric actin or filament ends and sides. These measurements provide quantitative information on the averaged behavior of a homogeneous population of filaments. They have been complemented by light microscopy observations of stabilized individual filaments, providing information inaccessible using averaging methods, such as mechanical properties or length distributions. In the past ten years, the improvement of light microscopy techniques has allowed biophysicists to monitor the dynamics of individual actin filaments, thus giving access to the length fluctuations of filaments or the mechanism of processive assembly by formins. Recently, in order to solve some of the problems linked to these observations, such as the need to immobilize filaments on a coverslip, we have used microfluidics as a tool to improve the observation, manipulation and analysis of individual actin filaments. This microfluidic method allowed us to rapidly switch filaments from polymerizing to depolymerizing conditions, and derive the molecular mechanism of ATP hydrolysis on a single filament from the kinetic analysis of its nucleotide-dependent disassembly rate. Here, we discuss how this work sets the basis for future experiments on actin dynamics, and briefly outline promising developments of this technique.
PMCID: PMC3337129  PMID: 22545179
actin assembly dynamics; microfluidics; single filament; TIRF microscopy
20.  Modulation of striated muscle contraction by binding of myosin binding protein C to actin 
Bioarchitecture  2011;1(6):277-283.
Myosin binding protein C (MyBP-C or C-protein) is a protein of the thick (myosin-containing) filaments of striated muscle thought to be involved in the modulation of cardiac contraction in response to β-adrenergic stimulation. The mechanism of this modulation is unknown, but one possibility is through transient binding of the N-terminal end of MyBP-C to the thin (actin-containing) filaments. While such binding has been demonstrated in vitro, it was not known until recently whether such a link between thick and thin filaments also occurred in vivo. Here we review a recent paper in which electron microscopy (EM) is used to directly demonstrate MyBP-C links between myosin and actin filaments in the intact sarcomere, suggesting a possible physical mechanism for modulating filament sliding. Molecular details of MyBP-C binding to actin have recently been elucidated by EM of isolated filaments: the results suggest that MyBP-C might contribute to the modulation of contraction in part by competing with tropomyosin for binding sites on actin. New results on the structure and dynamics of the MyBP-C molecule provide additional insights into the function of this enigmatic molecule.
PMCID: PMC3337130  PMID: 22545180
C-protein; cardiac muscle regulation; electron tomography; sarcomere structure; thick filament structure
21.  Minimum requirements for the actin-like treadmilling motor system 
Bioarchitecture  2011;1(5):205-208.
Actin is one of the most abundant proteins in eukaryote cells, which forms a double stranded filament. The actin filament is not only a main component of the cytoskeleton, but also acts as a motor protein which moves toward one specific end, the barbed end, driven by polymerization at the barbed end and depolymerization at the other end, the pointed end, without any associated proteins. This motor activity is referred to as “treadmilling” and it represents the simplest motor system known, consisting of only one 42 kDa protein, actin. Here we report the minimum requirements of the actin-like motor system elucidated by computer simulations: (1) Nucleotide binding and ATPase activity in the filament; (2) Polarity in the rates of polymerization and depolymerization between the two ends; and (3) The dependence of the subunit-subunit interactions on the bound nucleotide. These requirements are simple and this knowledge should facilitate the development of artificial molecular motor systems in the future.
PMCID: PMC3384570  PMID: 22754609
actin; computer simulation; electron microscopy; motor; treadmilling
22.  Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation 
Bioarchitecture  2011;1(5):209-215.
During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic spindle with the site of cell division to ensure normal distribution of cell fate determinants and equal sequestration of genetic material into the two daughter cells. Emerging data from diverse model systems have led to the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex signal for the recruitment of NuMA and the minus-end directed MT motor cytoplasmic dynein.1 The NuMA/dynein complex is believed to connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle, but how this connection is achieved faithfully is unclear. Do astral MTs need to search for and then capture cortical NuMA/dynein? How does dynein capture the astral MTs emanating from the correct spindle pole? Recently, using the classical model of asymmetric cell division—budding yeast S. cerevisiae—we successfully demonstrated that astral MTs assume an active role in cortical dynein targeting, in that astral MTs utilize their distal plus ends to deliver dynein to the daughter cell cortex, the site where dynein activity is needed to perform its spindle alignment function. This observation introduced the novel idea that, during mitotic spindle orientation processes, polarity cues at the cell cortex may actually signal to prime the cortical receptors for MT-dependent dynein delivery. This model is consistent with the observation that dynein/dynactin accumulate prominently at the astral MT plus ends during metaphase in a wide range of cultured mammalian cells.
PMCID: PMC3384571  PMID: 22754610
cytoplasmic dynein; dynein pathway; dynein targeting; spindle orientation
23.  Cytoskeleton dynamics in early zebrafish development 
Bioarchitecture  2011;1(5):216-220.
Early morphogenic movements are an important feature of embryonic development in vertebrates. During zebrafish gastrulation, epiboly progression is driven by the coordinated remodeling of the YSL microtubule network and F-actin cables. We recently described the implication of Nrz, an anti-apoptotic Bcl-2 homolog, in the control of the YSL cytoskeleton dynamics. Nrz knock-down induces premature actin-myosin ring formation leading to margin constriction, epiboly arrest and embryo lethality. At the molecular level, the Nrz protein controls the actin-myosin dynamics through IP3R-dependent calcium levels variation. Here, we discuss these novel findings and propose a model in which reversible phosphorylation of the Nrz/IP3R complex modulates the permeability of the IP3R calcium channel and thus may explain the Nrz-dependent control of IP3R opening required for proper epiboly completion.
PMCID: PMC3384572  PMID: 22754611
Bcl-2; IP3R; Nrz; actin cytoskeleton; calcium; phosphorylation; zebrafish
24.  Control of cortical microtubule organization and desmosome stability by centrosomal proteins 
Bioarchitecture  2011;1(5):221-224.
In many tissues microtubules reorganize into non-centrosomal arrays in differentiated cells. In the epidermis, proliferative basal cells have a radial array of microtubules organized around a centrosome, while differentiated cells have cortical microtubules. The desmosomal protein desmoplakin is required for the microtubules to organize around the cell cortex. Furthermore, the centrosomal and/or microtubule-associated proteins ninein, Lis1, Ndel1, and CLIP170 are recruited to the cell cortex, where they have been implicated in the cortical organization of microtubules. Recently, it has been shown that in Lis1-null epidermis, microtubules are disorganized in the differentiated layers of the epidermis. Furthermore, Lis1-null mice die perinatally due to dehydration. This is due, in part, to the unexpected desmosome phenotype observed in Lis1-null skin. Upon loss of Lis1, desmosomal proteins become less stable. Here, we propose that Lis1 may regulate desmosomal stability through its binding partners Nde1/Ndel1 and dynein.
PMCID: PMC3384573  PMID: 22754612
Lis1; desmoplakin; desmosome; epidermis; microtubule
25.  Homeostasis of the apical plasma membrane during regulated exocytosis in the salivary glands of live rodents 
Bioarchitecture  2011;1(5):225-229.
In exocrine organs such as the salivary glands, fluids and proteins are secreted into ductal structures by distinct mechanisms that are tightly coupled. In the acinar cells, the major secretory units of the salivary glands, fluids are secreted into the acinar canaliculi through paracellular and intracellular transport, whereas proteins are stored in large granules that undergo exocytosis and fuse with the apical plasma membranes releasing their content into the canaliculi. Both secretory processes elicit a remodeling of the apical plasma membrane that has not been fully addressed in in vitro or ex vivo models. Recently, we have studied regulated exocytosis in the salivary glands of live rodents, focusing on the role that actin and myosin plays in this process. We observed that during exocytosis both secretory granules and canaliculi are subjected to the hydrostatic pressure generated by fluid secretion. Furthermore, the absorption of the membranes of the secretory granules contributes to the expansion and deformation of the canaliculi. Here we suggest that the homeostasis of the apical plasma membranes during exocytosis is maintained by various strategies that include: (1) membrane retrieval via compensatory endocytosis, (2) increase of the surface area via membrane folds and (3) recruitment of a functional actomyosin complex. Our observations underscore the important relationship between tissue architecture and cellular response, and highlight the potential of investigating biological processes in vivo by using intravital microscopy.
PMCID: PMC3384574  PMID: 22754613
actin; cytoskeleton; exocrine glands; exocytosis; intravital microscopy; membrane tension; myosin; salivary glands; secretion

Results 1-25 (28)