PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data 
BioData Mining  2009;2:9.
Background
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of rows coherent with groups of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed.
Methods
We introduce BiMine, a new enumeration algorithm for biclustering of DNA microarray data. The proposed algorithm is based on three original features. First, BiMine relies on a new evaluation function called Average Spearman's rho (ASR). Second, BiMine uses a new tree structure, called Bicluster Enumeration Tree (BET), to represent the different biclusters discovered during the enumeration process. Third, to avoid the combinatorial explosion of the search tree, BiMine introduces a parametric rule that allows the enumeration process to cut tree branches that cannot lead to good biclusters.
Results
The performance of the proposed algorithm is assessed using both synthetic and real DNA microarray data. The experimental results show that BiMine competes well with several other biclustering methods. Moreover, we test the biological significance using a gene annotation web-tool to show that our proposed method is able to produce biologically relevant biclusters. The software is available upon request from the authors to academic users.
doi:10.1186/1756-0381-2-9
PMCID: PMC2804695  PMID: 20015398
2.  3PFDB - A database of Best Representative PSSM Profiles (BRPs) of Protein Families generated using a novel data mining approach 
BioData Mining  2009;2:8.
Background
Protein families could be related to each other at broad levels that group them as superfamilies. These relationships are harder to detect at the sequence level due to high evolutionary divergence. Sequence searches are strongly directed and influenced by the best representatives of families that are viewed as starting points. PSSMs are useful approximations and mathematical representations of protein alignments, with wide array of applications in bioinformatics approaches like remote homology detection, protein family analysis, detection of new members and evolutionary modelling. Computational intensive searches have been performed using the neural network based sensitive sequence search method called FASSM to identify the Best Representative PSSMs for families reported in Pfam database version 22.
Results
We designed a novel data mining approach for the assessment of individual sequences from a protein family to identify a single Best Representative PSSM profile (BRP) per protein family. Using the approach, a database of protein family-specific best representative PSSM profiles called 3PFDB has been developed. PSSM profiles in 3PFDB are curated using performance of individual sequence as a reference in a rigorous scoring and coverage analysis approach using FASSM. We have assessed the suitability of 10, 85,588 sequences derived from seed or full alignments reported in Pfam database (Version 22). Coverage analysis using FASSM method is used as the filtering step to identify the best representative sequence, starting from full length or domain sequences to generate the final profile for a given family. 3PFDB is a collection of best representative PSSM profiles of 8,524 protein families from Pfam database.
Conclusion
Availability of an approach to identify BRPs and a curated database of best representative PSI-BLAST derived PSSMs for 91.4% of current Pfam family will be a useful resource for the community to perform detailed and specific analysis using family-specific, best-representative PSSM profiles. 3PFDB can be accessed using the URL: http://caps.ncbs.res.in/3pfdb
doi:10.1186/1756-0381-2-8
PMCID: PMC2801675  PMID: 19961575
3.  LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage disequilibrium 
BioData Mining  2009;2:7.
Background
Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs) prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD), and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes.
Methods
In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms.
Results
We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics.
Conclusion
LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.
doi:10.1186/1756-0381-2-7
PMCID: PMC2795743  PMID: 19954552
4.  Extraction of pure components from overlapped signals in gas chromatography-mass spectrometry (GC-MS) 
BioData Mining  2009;2:6.
Gas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique for the identification and quantification of trace chemicals in complex mixtures. When complex samples are analyzed by GC-MS it is common to observe co-elution of two or more components, resulting in an overlap of signal peaks observed in the total ion chromatogram. In such situations manual signal analysis is often the most reliable means for the extraction of pure component signals; however, a systematic manual analysis over a number of samples is both tedious and prone to error. In the past 30 years a number of computational approaches were proposed to assist in the process of the extraction of pure signals from co-eluting GC-MS components. This includes empirical methods, comparison with library spectra, eigenvalue analysis, regression and others. However, to date no approach has been recognized as best, nor accepted as standard. This situation hampers general GC-MS capabilities, and in particular has implications for the development of robust, high-throughput GC-MS analytical protocols required in metabolic profiling and biomarker discovery. Here we first discuss the nature of GC-MS data, and then review some of the approaches proposed for the extraction of pure signals from co-eluting components. We summarize and classify different approaches to this problem, and examine why so many approaches proposed in the past have failed to live up to their full promise. Finally, we give some thoughts on the future developments in this field, and suggest that the progress in general computing capabilities attained in the past two decades has opened new horizons for tackling this important problem.
doi:10.1186/1756-0381-2-6
PMCID: PMC2770549  PMID: 19818154
5.  Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions 
BioData Mining  2009;2:5.
Background
Genome-wide association studies are becoming the de facto standard in the genetic analysis of common human diseases. Given the complexity and robustness of biological networks such diseases are unlikely to be the result of single points of failure but instead likely arise from the joint failure of two or more interacting components. The hope in genome-wide screens is that these points of failure can be linked to single nucleotide polymorphisms (SNPs) which confer disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-gene effects is difficult however, and methods to exhaustively analyze sets of these variants for interactions are combinatorial in nature thus making them computationally infeasible. Efficient algorithms which can detect interacting SNPs are needed. ReliefF is one such promising algorithm, although it has low success rate for noisy datasets when the interaction effect is small. ReliefF has been paired with an iterative approach, Tuned ReliefF (TuRF), which improves the estimation of weights in noisy data but does not fundamentally change the underlying ReliefF algorithm. To improve the sensitivity of studies using these methods to detect small effects we introduce Spatially Uniform ReliefF (SURF).
Results
SURF's ability to detect interactions in this domain is significantly greater than that of ReliefF. Similarly SURF, in combination with the TuRF strategy significantly outperforms TuRF alone for SNP selection under an epistasis model. It is important to note that this success rate increase does not require an increase in algorithmic complexity and allows for increased success rate, even with the removal of a nuisance parameter from the algorithm.
Conclusion
Researchers performing genetic association studies and aiming to discover gene-gene interactions associated with increased disease susceptibility should use SURF in place of ReliefF. For instance, SURF should be used instead of ReliefF to filter a dataset before an exhaustive MDR analysis. This change increases the ability of a study to detect gene-gene interactions. The SURF algorithm is implemented in the open source Multifactor Dimensionality Reduction (MDR) software package available from .
doi:10.1186/1756-0381-2-5
PMCID: PMC2761303  PMID: 19772641
6.  Statistical quality assessment and outlier detection for liquid chromatography-mass spectrometry experiments 
BioData Mining  2009;2:4.
Background
Quality assessment methods, that are common place in engineering and industrial production, are not widely spread in large-scale proteomics experiments. But modern technologies such as Multi-Dimensional Liquid Chromatography coupled to Mass Spectrometry (LC-MS) produce large quantities of proteomic data. These data are prone to measurement errors and reproducibility problems such that an automatic quality assessment and control become increasingly important.
Results
We propose a methodology to assess the quality and reproducibility of data generated in quantitative LC-MS experiments. We introduce quality descriptors that capture different aspects of the quality and reproducibility of LC-MS data sets. Our method is based on the Mahalanobis distance and a robust Principal Component Analysis.
Conclusion
We evaluate our approach on several data sets of different complexities and show that we are able to precisely detect LC-MS runs of poor signal quality in large-scale studies.
doi:10.1186/1756-0381-2-4
PMCID: PMC2678124  PMID: 19351414
7.  Partitioning clustering algorithms for protein sequence data sets 
BioData Mining  2009;2:3.
Background
Genome-sequencing projects are currently producing an enormous amount of new sequences and cause the rapid increasing of protein sequence databases. The unsupervised classification of these data into functional groups or families, clustering, has become one of the principal research objectives in structural and functional genomics. Computer programs to automatically and accurately classify sequences into families become a necessity. A significant number of methods have addressed the clustering of protein sequences and most of them can be categorized in three major groups: hierarchical, graph-based and partitioning methods. Among the various sequence clustering methods in literature, hierarchical and graph-based approaches have been widely used. Although partitioning clustering techniques are extremely used in other fields, few applications have been found in the field of protein sequence clustering. It is not fully demonstrated if partitioning methods can be applied to protein sequence data and if these methods can be efficient compared to the published clustering methods.
Methods
We developed four partitioning clustering approaches using Smith-Waterman local-alignment algorithm to determine pair-wise similarities of sequences. Four different sets of protein sequences were used as evaluation data sets for the proposed methods.
Results
We show that these methods outperform several other published clustering methods in terms of correctly predicting a classifier and especially in terms of the correctness of the provided prediction. The software is available to academic users from the authors upon request.
doi:10.1186/1756-0381-2-3
PMCID: PMC2678123  PMID: 19341454
8.  Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms 
BioData Mining  2009;2:2.
Background
The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs) constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation.
Results
We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR) approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194). We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI) database (n = 29967) and a control set of sequences (coding region) not associated with SNP sites randomly selected from the NCBI database (n = 29967). We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p << 0.001) were detected for each SNP type examined in the larger NCBI dataset. Importantly, the flanking region models were elongated or truncated depending on the nucleotide change. Additionally, nucleotide distributions differed significantly at motif sites relative to the type of variation observed. The MDR approach effectively discerned specific sites within the flanking regions of observed SNPs and their respective identities, supporting the collective contribution of these sites to SNP genesis.
Conclusion
The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in this study, it may become possible to scan genomic databases for such clustering of nucleotides in order to predict likely sites of future SNPs, and even the type of polymorphism most likely to occur.
doi:10.1186/1756-0381-2-2
PMCID: PMC2669078  PMID: 19331672
9.  Database mining for selection of SNP markers useful in admixture mapping 
BioData Mining  2009;2:1.
Background
New technologies make it possible for the first time to genotype hundreds of thousands of SNPs simultaneously. A wealth of genomic information in the form of publicly available databases is underutilized as a potential resource for uncovering functionally relevant markers underlying complex human traits. Given the huge amount of SNP data available from the annotation of human genetic variation, data mining is a reasonable approach to investigating the number of SNPs that are informative for ancestry information.
Methods
The distribution and density of SNPs across the genome of African and European populations were extensively investigated by using the HapMap, Affymetrix, and Illumina SNP databases. We exploited these resources by mining the data available from each of these databases to prioritize potential candidate SNPs useful for admixture mapping in complex human diseases and traits. Over 4 million SNPs were compared between Africans and Europeans on the basis of a pre-specified recommended allele frequency difference (delta) value of ≥ 0.3.
Results
The method identified 15% of HapMap, 11% of Affymetrix, and 14% of Illumina SNP sets as candidate SNPs, termed ancestry informative markers (AIMs). These AIM panels with assigned rs numbers, allele frequencies in each ethnic group, delta value, and map positions are all posted on our website . All marker information in this data set is freely and publicly available without restriction.
Conclusion
The selected SNP sets represent valuable resources for admixture mapping studies. The overlap between selected AIMs by this single measure of marker informativeness in the different platforms is discussed.
doi:10.1186/1756-0381-2-1
PMCID: PMC2649128  PMID: 19216798

Results 1-9 (9)