Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Change of the work function of platinum electrodes induced by halide adsorption 
The properties of a halogen-covered platinum(111) surface have been studied by using density functional theory (DFT), because halides are often present at electrochemical electrode/electrolyte interfaces. We focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine. For electronegative adsorbates, an adsorption-induced increase of the work function is usually expected, yet we find a decrease of the work function for Cl, Br and I, which is most prominent at a coverage of approximately 0.25 ML. This coverage-dependent behavior can be explained by assuming a combination of charge transfer and polarization effects on the adsorbate layer. The results are contrasted to the adsorption of fluorine on calcium, a system in which a decrease in the work function is also observed despite a large charge transfer to the halogen adatom.
PMCID: PMC3943700  PMID: 24605280
density functional theory; ionicity; polarizability; surface dipole; work function
2.  Influence of the solvent on the stability of bis(terpyridine) structures on graphite 
The effect of solvation on the adsorption of organic molecules on graphite at room temperature has been addressed with force-field molecular dynamics simulations. As a model system, the solvation of a bis(terpyridine) isomer in water and 1,2,4-trichlorobenzene was studied with an explicit solvation model. The inclusion of solvation has a noticeable effect on adsorption energies. Although the results of the various considered force fields differ quite significantly, they all agree that the adsorption of BTP from the TCB solvent is almost thermoneutral. The substrate simply acts as a template to allow a planar arrangement of the network, which is stabilized by the intermolecular interaction. Using an atomic thermodynamics approach, the order of the stability of various network structures as a function of the chemical potential is derived yielding a sequence in agreement with the experiment.
PMCID: PMC3678400  PMID: 23766949
computer simulations; energy related; force-field calculations; nanomaterials; solvation
3.  Structural and electronic properties of oligo- and polythiophenes modified by substituents 
The electronic and structural properties of oligo- and polythiophenes that can be used as building blocks for molecular electronic devices have been studied by using periodic density functional theory calculations. We have in particular focused on the effect of substituents on the electronic structure of thiophenes. Whereas singly bonded substituents, such as methyl, amino or nitro groups, change the electronic properties of thiophene monomers and dimers, they hardly influence the band gap of polythiophene. In contrast, phenyl-substituted polythiophenes as well as vinyl-bridged polythiophene derivatives exhibit drastically modified band gaps. These effects cannot be explained by simple electron removal or addition, as calculations for charged polythiophenes demonstrate.
PMCID: PMC3555564  PMID: 23365804
band gaps; conducting polymers; density functional theory calculations; molecular electronics; oligothiophenes
4.  Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine)-derived oligopyridines in two-dimensional self-assembly 
The position of the peripheral nitrogen atoms in bis(terpyridine)-derived oligopyridines (BTPs) has a strong impact on their self-assembly behavior at the liquid/HOPG (highly oriented pyrolytic graphite) interface. The intermolecular hydrogen bonding interactions in these peripheral pyridine units show specific 2D structures for each BTP isomer. From nine possible constitutional isomers only four have been described in the literature. The synthesis and self-assembling behavior of an additional isomer is presented here, but the remaining four members of the series are synthetically inaccessible. The self-assembling properties of three of the missing four BTP isomers can be mimicked by making use of the energetically preferred N–C–C–N transoid conformation between 2,2'-bipyridine subunits in a new class of so-called septipyridines. The structures are investigated by scanning tunneling microscopy (STM) and a combination of force-field and first-principles electronic structure calculations.
PMCID: PMC3190612  PMID: 22003448
oligopyridines; self-assembled monolayer; STM
5.  Simulation of bonding effects in HRTEM images of light element materials 
The accuracy of multislice high-resolution transmission electron microscopy (HRTEM) simulation can be improved by calculating the scattering potential using density functional theory (DFT) [1–2]. This approach accounts for the fact that electrons in the specimen are redistributed according to their local chemical environment. This influences the scattering process and alters the absolute and relative contrast in the final image. For light element materials with well defined geometry, such as graphene and hexagonal boron nitride monolayers, the DFT based simulation scheme turned out to be necessary to prevent misinterpretation of weak signals, such as the identification of nitrogen substitutions in a graphene network. Furthermore, this implies that the HRTEM image does not only contain structural information (atom positions and atomic numbers). Instead, information on the electron charge distribution can be gained in addition.
In order to produce meaningful results, the new input parameters need to be chosen carefully. Here we present details of the simulation process and discuss the influence of the main parameters on the final result. Furthermore we apply the simulation scheme to three model systems: A single atom boron and a single atom oxygen substitution in graphene and an oxygen adatom on graphene.
PMCID: PMC3190611  PMID: 22003447
chemical bonding; DFT; graphene; HRTEM
6.  Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001) 
The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results.
PMCID: PMC3190608  PMID: 22003444
graphene film; intermolecular interaction; large organic molecules; substrate–adsorbate interaction; supramolecular structure
7.  Influence of water on the properties of an Au/Mpy/Pd metal/molecule/metal junction 
The geometric and electronic structure of the metal–molecule interface in metal/molecule/metal junctions is of great interest since it affects the functionality of such units in possible nanoelectronic devices. We have investigated the interaction between water and a palladium monolayer of a Au(111)/4-mercaptopyridine/Pd junction by means of DFT calculations. A relatively strong bond between water and the palladium monolayer of the Au/Mpy/Pd complex is observed via a one-fold bond between the oxygen atom of the water molecule and a Pd atom. An isolated H2O molecule adsorbs preferentially in a flat-lying geometry on top of a palladium atom that is at the same time also bound to the nitrogen atom of a Mpy molecule of the underlying self-assembled monolayer. The electronic structure of these Pd atoms is considerably modified which is reflected in a reduced local density of states at the Fermi energy. At higher coverages, water can be arranged in a hexagonal ice-like bilayer structure in analogy to water on bulk metal surfaces, but with a much stronger binding which is dominated by O–Pd bonds.
PMCID: PMC3190610  PMID: 22003446
density functional calculations; self-assembled monolayers; water adsorption

Results 1-7 (7)