Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes 
Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination of TiO2 photoelectrodes using Kelvin probe force microscopy in combination with a tunable illumination system. A comparison of the surface potentials for TiO2 photoelectrodes sensitized with two different dyes, i.e., the standard dye N719 and a copper(I) bis(imine) complex, reveals an inverse orientation of the surface dipole. A higher surface potential was determined for an N719 photoelectrode. The surface potential increase due to the surface dipole correlates with a higher DSC performance. Concluding from this, microscopic surface potential variations, attributed to the complex nanostructure of the photoelectrode, influence the DSC performance. For both bare and sensitized TiO2 photoelectrodes, the measurements reveal microscopic inhomogeneities of more than 100 mV in the work function and show recombination time differences at different locations. The bandgap of 3.2 eV, determined by SPV spectroscopy, remained constant throughout the TiO2 layer. The effect of the built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far.
PMCID: PMC3701424  PMID: 23844348
atomic force microscopy (AFM); dye-sensitized solar cells (DSC); Kelvin probe force microscopy (KPFM); surface photovoltage (SPV); titanium dioxide (TiO2)
2.  Advanced atomic force microscopy techniques 
PMCID: PMC3554267  PMID: 23365802
atomic force microscopy
3.  The role of the cantilever in Kelvin probe force microscopy measurements 
The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been calculated and found to be relatively small.
PMCID: PMC3148059  PMID: 21977437
boundary elements method; cantilever; convolution; Kelvin probe force microscopy; point spread function
4.  Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM 
The growth of molecular assemblies at room temperature on insulating surfaces is one of the main goals in the field of molecular electronics. Recently, the directed growth of porphyrin-based molecular wires on KBr(001) was presented. The molecule–surface interaction associated with a strong dipole moment of the molecules was sufficient to bind them to the surface; while a stabilization of the molecular assemblies was reached due to the intermolecular interaction by π–π binding. Here, we show that the atomic structure of the substrate can control the direction of the wires and consequently, complex molecular assemblies can be formed. The electronic decoupling of the molecules by one or two monolayers of KBr from the Cu(111) substrate is found to be insufficient to enable comparable growth conditions to bulk ionic materials.
PMCID: PMC3045942  PMID: 21977413
directed growth; KBr; molecular wires; NaCl; nc-AFM; porphyrin; self assembly

Results 1-4 (4)