PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates 
Summary
This work describes a general method for the preparation of salt nanoparticles (NPs) made from an aqueous solution of ionic compounds (NaCl, CuSO4 and KI). These nanoparticles were created by the application of ultrasonic waves to the aqueous solutions of these salts. When the sonication was carried out in the presence of a glass microscope slide, a parylene-coated glass slide, or a silicon wafer the ionic NPs were embedded in these substrates by a one-step, ultrasound-assisted procedure. Optimization of the coating process resulted in homogeneous distributions of nanocrystals, 30 nm in size, on the surfaces of the substrates. The morphology and structure of each of the coatings were characterized by physical and chemical methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). After 24 h of leaching into water the nanoparticles of the inorganic salts were still present on the slides, and complete leaching of nanoparticles occurred only after 96 h. A mechanism of the ultrasound-assisted coating is proposed.
doi:10.3762/bjnano.3.30
PMCID: PMC3323916  PMID: 22497000
deposition; ionic salt nanoparticles; parylene; sonochemistry
2.  Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method 
Summary
The aim of the current work is the synthesis and characterization of metallic Zr nanoparticles. The preparation is carried out by using the RAPET method (Reaction under Autogenic Pressure at Elevated Temperatures) developed in our lab. The RAPET reaction of commercial ZrO2 with Mg powder was carried out in a closed stainless steel cell, at 750 °C. On completion of the reaction, the additionally formed MgO is removed by treatment with acid. The characterization of the product was performed by XRD, X-ray absorption spectroscopy, SEM, TEM and elemental analysis. The XRD pattern reveals that the product is composed of pure metallic zirconium, without any traces of the MgO by-product.
doi:10.3762/bjnano.2.23
PMCID: PMC3148038  PMID: 21977431
Let-Lok®; nanoparticles; RAPET; reduction; zirconium

Results 1-2 (2)