PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Single-stranded genomic architecture constrains optimal codon usage 
Bacteriophage  2011;1(4):219-224.
Viral codon usage is shaped by the conflicting forces of mutational pressure and selection to match host patterns for optimal expression. We examined whether genomic architecture (single- or double-stranded DNA) influences the degree to which bacteriophage codon usage differ from their primary bacterial hosts and each other. While both correlated equally with their hosts’ genomic nucleotide content, the coat genes of ssDNA phages were less well adapted than those of dsDNA phages to their hosts’ codon usage profiles due to their preference for codons ending in thymine. No specific biases were detected in dsDNA phage genomes. In all nine of ten cases of codon redundancy in which a specific codon was overrepresented, ssDNA phages favored the NNT codon. A cytosine to thymine biased mutational pressure working in conjunction with strong selection against non-synonymous mutations appears be shaping codon usage bias in ssDNA viral genomes.
doi:10.4161/bact.1.4.18496
PMCID: PMC3278643  PMID: 22334868
bacteriophage; codon usage bias; evolution; genome; genomic adaptation; genomic architecture; single-stranded DNA
2.  Exploiting what phage have evolved to control gram-positive pathogens 
Bacteriophage  2011;1(4):188-194.
In the billion years that bacteriophage (or phage) have existed together with bacteria the phage have evolved systems that may be exploited for our benefit. One of these is the lytic system used by the phage to release their progeny from an infected bacterium. Endolysins (or lysins) are highly evolved enzymes in the lytic system produced to cleave essential bonds in the bacterial cell wall peptidoglycan for progeny release. Small quantities of purified recombinant lysin added externally to gram-positive bacteria results in immediate lysis causing log-fold death of the target bacterium. Lysins have now been used successfully in a variety of animal models to control pathogenic antibiotic resistant bacteria found on mucosal surfaces and in infected tissues. The advantages over antibiotics are their specificity for the pathogen without disturbing the normal flora, the low chance of bacterial resistance, and their ability to kill colonizing pathogens on mucosal surfaces, a capacity previously unavailable. Lysins therefore, may be a much-needed anti-infective (or enzybiotic) in an age of mounting antibiotic resistance.
doi:10.4161/bact.1.4.17747
PMCID: PMC3448103  PMID: 23050211
bacteriophage; endolysin; gram-positive bacteria; lytic enzymes; mucosal colonization; phage; prophylaxis; therapeutic
3.  Phage as a source of antibacterial genes 
Bacteriophage  2011;1(4):195-197.
Bacteriophage-encoded proteins which inhibit or modify cellular components may contribute to antibacterial drug discovery by allowing the identification of novel targets. Given their abundance and diversity, phages may have various strategies in host inhibition and therefore may possess a variety of such proteins. Using Rhodococcus equi and phage YF1, we show that a single phage possesses numerous genes that inhibit the host when introduced into the host on a plasmid. These genes mostly encode proteins of unknown function, confirming the potential that this approach may have in providing new antibacterial targets.
doi:10.4161/bact.1.4.17746
PMCID: PMC3448104  PMID: 23050212
antibacterial drug discovery; bactericidal proteins; multidrug resistance; phage YF1; target identification
4.  In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK 
Bacteriophage  2011;1(4):198-206.
The aim of this study was to use comparative modeling to predict the three-dimensional structure of the CHAPK protein (cysteine, histidine-dependent amidohydrolase/peptidase domain of the LysK endolysin, derived from bacteriophage K). Iterative PSI-BLAST searches against the Protein Data Bank (PDB) and nonredundant (nr) databases were used to populate a multiple alignment for analysis using the T-Coffee Expresso server. A consensus Maximum Parsimony phylogenetic tree with a bootstrap analysis setting of 1,000 replicates was constructed using MEGA4. Structural templates relevant to our target (CHAPK) were identified, processed in Expresso and used to generate a 3D model in the alignment mode of SWISS-MODEL. These templates were also processed in the I-TASSER web server. A Staphylococcus saprophyticus CHAP domain protein, 2K3A, was identified as the structural template in both servers. The I-TASSER server generated the CHAPK model with the best bond geometries when analyzed using PROCHECK and the most logical organization of the structure. The predicted 3D model indicates that CHAPK has a papain-like fold. Circular dichroism spectropolarimetry also indicated that CHAPK has an αβ fold, which is consistent with the model presented. The putative active site maintained a highly conserved Cys54-His117-Glu134 charge relay and an oxyanion hole residue Asn136. The residue triplet, Cys-His-Glu, is known to be a viable proteolytic triad in which we predict the Cys residue is used in a nucleophilic attack on peptide bonds at a specific site in the pentaglycine cross bridge of staphylococcal cell wall peptidoglycan. Use of comparative modeling has allowed approximation of the 3D structure of CHAPK giving information on the structure and an insight into the binding and active site of the catalytic domain. This may facilitate its development as an alternative antibacterial agent.
doi:10.4161/bact.1.4.18245
PMCID: PMC3448105  PMID: 23050213
bacteriophage; CHAP; endolysin; in silico; peptidase; staphylococcus
5.  Phylogenetic structure and evolution of regulatory genes and integrases of P2-like phages 
Bacteriophage  2011;1(4):207-218.
The phylogenetic relationships and structural similarities of the proteins encoded within the regulatory region (containing the integrase gene and the lytic–lysogenic transcriptional switch genes) of P2-like phages were analyzed, and compared with the phylogenetic relationship of P2-like phages inferred from four structural genes. P2-like phages are thought to be one of the most genetically homogenous phage groups but the regulatory region nevertheless varies extensively between different phage genomes.
 
The analyses showed that there are many types of regulatory regions, but two types can be clearly distinguished; regions similar either to the phage P2 or to the phage 186 regulatory regions. These regions were also found to be most frequent among the sequenced P2-like phage or prophage genomes, and common in phages using Escherichia coli as a host. Both the phylogenetic and the structural analyses showed that these two regions are related. The integrases as well as the cox/apl genes show a common monophyletic origin but the immunity repressor genes, the type P2 C gene and the type 186 cI gene, are likely of different origin. There was no indication of recombination between the P2–186 types of regulatory genes but the comparison of the phylogenies of the regulatory region with the phylogeny based on four structural genes revealed recombinational events between the regulatory region and the structural genes.
Less common regulatory regions were phylogenetically heterogeneous and typically contained a fusion of genes from distantly related or unknown phages and P2-like genes.
doi:10.4161/bact.1.4.18470
PMCID: PMC3448106  PMID: 23050214
gamma-proteobacteria; lytic-lysogenic transcriptional switch; P2-like bacteriophages; peduovirinae; phage integration; phylogenetic analysis
6.  The first phage electron micrographs 
Bacteriophage  2011;1(4):225-227.
The first phage electron micrographs were published in 1940 in Germany and proved the particulate nature of bacteriophages. Phages and infected bacteria were first examined raw and unstained. US American scientists introduced shadowing and freeze-drying. Phages appeared to be tailed and morphologically heterogeneous. Phage types identified by early electron microscopy include enterobacteriophages T4, T1, T7, T5, 7–11, ViI and Pseudomonas phage PB1. This paper retraces the development of early virus electron microscopy till the introduction of negative staining.
doi:10.4161/bact.1.4.17280
PMCID: PMC3448108  PMID: 23050215
bacteriophage; electron microscopy; history
9.  Envisaging bacteria as phage targets 
Bacteriophage  2011;1(4):228-230.
It can be difficult to appreciate just how small bacteria and phages are or how large, in comparison, the volumes that they occupy. A single milliliter, for example, can represent to a phage what would be, with proper scaling, an “ocean” to you and me. Here I illustrate, using more easily visualized macroscopic examples, the difficulties that a phage, as a randomly diffusing particle, can have in locating bacteria to infect. I conclude by restating the truism that the rate of phage adsorption to a given target bacterium is a function of phage density, that is, titer, in combination with the degree of bacterial susceptibility to adsorption by an encountering phage.
doi:10.4161/bact.1.4.17281
PMCID: PMC3626390  PMID: 23616932
mean free path; phage adsorption; phage therapy
10.  Phage-based biocontrol strategies to reduce foodborne pathogens in foods 
Bacteriophage  2011;1(3):130-137.
There has been much recent interest in the use of phages as biocontrol agents of foodborne pathogens in animals used for food production, and in the food products themselves. This interest seems to be driven by consumers' request for more natural foods, as well as the fact that foodborne outbreaks continue to occur, globally, in many foods, some of which (such as fresh produce), lack adequate methods to control any pathogenic contamination present. Also, the many successes with respect to regulatory approval of phage based products destined for use in foods is leading to an increase in the number of phage products that are commercially available. At present, these products are directed against three main foodborne pathogens including Escherichia coli O157:H7, Salmonella spp and Listeria monocytogenes. In the future, it is likely that new phage products will be targeted against emerging foodborne pathogens. Here, we review the current literature and status of phage based strategies aimed at reducing the presence of foodborne pathogenic bacteria in food and the food production environment.
doi:10.4161/bact.1.3.17629
PMCID: PMC3225777  PMID: 22164346
bacteriophage; biocontrol; food safety; bacterial foodborne pathogens; pre-harvest; post-harvest
11.  Morphology and genome sequence of phage ϕ1402 
Bacteriophage  2011;1(3):138-142.
Phages are among the simplest biological entities known and simultaneously the most numerous and ubiquitous members of the biosphere. Among the three families of tailed dsDNA phages, the Myoviridae have the most structurally sophisticated tails which are capable of contraction, unlike the simpler tails of the Podoviridae and Siphoviridae. Such “nanomachines” tails are involved in both efficient phage adsorption and genome injection. Their structural complexity probably necessitates multistep morphogenetic pathways, involving non-structural components, to correctly assemble the structural constituents. For reasons probably related, at least in part, to such morphological intricacy, myoviruses tend to have larger genomes than simpler phages. As a consequence, there are no well-characterized myoviruses with a size of less than 40 kb. Here we report on the characterization and sequencing of the 23,931 bp genome of the dwarf myovirus ϕ1402 of Bdellovibrio bacteriovorus. Our genomic analysis shows that ϕ1402 differs substantially from all other known phages and appears to be the smallest known autonomous myovirus.
doi:10.4161/bact.1.3.15769
PMCID: PMC3225778  PMID: 22164347
Bdellovibrio phage; dwarf myovirus; complete genome; terminase; capsomers
12.  Reporter bacteriophage A511::celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells 
Bacteriophage  2011;1(3):143-151.
Reporter bacteriophages for detection of pathogenic bacteria offer fast and sensitive screening for live bacterial targets. We present a novel strategy employing a gene encoding a hyperthermophilic enzyme, permitting the use of various substrates and assay formats. The celB gene from the hyperthermophilic archaeon Pyrococcus furiosus specifying an extremely thermostable β-glycosidase was inserted into the genome of the broad host range, virulent Listeria phage A511 by homologous recombination. It is expressed at the end of the infectious cycle, under control of the strong major capsid gene promoter Pcps. Infection of Listeria with A511::celB results in strong gene expression and synthesis of a fully functional β-glycosidase. The reporter phage was tested for detection of viable Listeria cells with different chromogenic, fluorescent or chemiluminescent substrates. The best signal-to-noise ratio and sufficiently high sensitivity was obtained using the inexpensive substrate 4-Methylumbelliferyl-α-D-Glucopyranoside (MUG). The reporter phage assay is simple to perform and can be completed in about 6 h. Phage infection, as well as the subsequent temperature shift, enzymatic substrate conversion and signal recordings are independent from each other and may be performed separately. The detection limit for viable Listeria monocytogenes in an assay format adapted to 96-well microplates was 7.2 × 102 cells per well, corresponding to 6 × 103 cfu per ml in suspension. Application of the A511::celB protocol to Listeria in spiked chocolate milk and salmon demonstrate the usefulness of the reporter phage for rapid detection of low numbers of the bacteria (10 cfu/g or less) in contaminated foods.
doi:10.4161/bact.1.3.16710
PMCID: PMC3225779  PMID: 22164348
Listeria monocytogenes; reporter bacteriophage; Pyrococcus furiosus; glycosidase; celB; rapid methods; food safety
13.  Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus 
Bacteriophage  2011;1(3):152-164.
A lytic phage, designated as ϕTMA, was isolated from a Japanese hot spring using Thermus thermophilus HB27 as an indicator strain. Electron microscopic examination showed that ϕTMA had an icosahedral head and a contractile tail. The circular double-stranded DNA sequence of ϕTMA was 151,483 bp in length, and its organization was essentially same as that of ϕYS40 except that the ϕTMA genome contained genes for a pair of transposase and resolvase, and a gene for a serine to asparagine substituted ortholog of the protein involved in the initiation of the ϕYS40 genomic DNA synthesis. The different host specificities of ϕTMA and ϕYS40 could be explained by the sequence differences in the C-terminal regions of their distal tail fiber proteins. The ΔpilA knockout strains of T. thermophilus showed simultaneous loss of sensitivity to their cognate phages, pilus structure, twitching motility and competence for natural transformation, thus suggesting that the phage infection required the intact host pili. Pulsed-field gel electrophoresis analysis of the ϕTMA and ϕYS40 genomes revealed that the length of their DNA exceeded 200 kb, indicating that the terminal redundancy is more than 30% of the closed circular form. Proteomic analysis of the ϕTMA virion using a combination of N-terminal sequencing and mass spectrometric analysis of peptide fragments suggested that the maturation of several proteins involved in the phage assembly process was mediated by a trypsin-like protease. The gene order of the phage structural proteins was also discussed.
doi:10.4161/bact.1.3.16712
PMCID: PMC3225780  PMID: 22164349
Thermus thermophilus; myovirus; genomics; antagonistic coevolution; proteomics
14.  Investigation of bacteriophage T4 by atomic force microscopy 
Bacteriophage  2011;1(3):165-173.
Bacteriophage T4 was visualized using atomic force microscopy (AFM). The images were consistent with, and complementary to electron microscopy images. Head heights of dried particles containing DNA were about 75 nm in length and 60 nm in width, or about 100 nm and 85 nm respectively when scanned in fluid. The diameter of hydrated tail assemblies was 28 nm and their lengths about 130 nm. Seven to eight pronounced, right-handed helical turns with a pitch of 15 nm were evident on the tail assemblies. At the distal end of the tail was a knob shaped mass, presumably the baseplate. The opposite end, where the tail assembly joins the head, was tapered and connected to the portal complex, which was also visible. Phage that had ejected their DNA revealed the internal injection tube of the tail assembly. Heads disrupted by osmotic shock yielded boluses of closely packed DNA that unraveled slowly to expose threads composed of multiple twisted strands of nucleic acid. Assembly errors resulted in the appearance of several percent of the phage exhibiting two rather than one tail assemblies that were consistently oriented at about 72° to one another. No pattern of capsomeres was visible on native T4 heads. A mutant that is negative for the surface proteins hoc and soc, however, clearly revealed the icosahedral arrangement of ring shaped capsomeres on the surface. The hexameric rings have an outside diameter of about 14 nm, a pronounced central depression, and a center-to-center distance of 15 nm. Phage collapsed on cell surfaces appeared to be dissolving, possibly into the cell membrane.
doi:10.4161/bact.1.3.17650
PMCID: PMC3225781  PMID: 22164350
DNA; virus; mutants; hoc; soc; capsomeres
15.  Bacteriophage prehistory 
Bacteriophage  2011;1(3):174-178.
We identified 30 actual or presumptive “bacteriophage” references dating between the years 1895 and 1917 and have further explored one of the oldest: Hankin's 1896 study of a bactericidal action associated with the waters of the Ganges and Jumna rivers in India. As Hankin's work took place approximately 20 years prior to the actual discovery of bacteriophages, no claims were made as to a possible phage nature of the phenomenon. Here we suggest that it may be imprudent to assume nevertheless that it represents an early observation of phagemediated bactericidal activity. Our principal argument is that the antibacterial aspect of these river waters was able to retain full potency following “heating” for one-half hour in hermetically sealed tubes, where heating in “open” tubes resulted in loss of antibacterial activity. We also suggest that environmental phage counts would have had to have been unusually high—greater than 106/ml impacting a single host strain—to achieve the rates of bacterial loss that Hankin observed.
doi:10.4161/bact.1.3.16591
PMCID: PMC3225782  PMID: 22164351
Ganges River; history; natural bactericidal activity; presumptive early phage references
16.  Facilitation of CRISPR adaptation 
Bacteriophage  2011;1(3):179-181.
CRISPR systems, as bacterial defenses against phages, logically must display in their functioning a sequence of at least three major steps. These, in order of occurrence, are “facilitation,” adaptation and interference, where the facilitation step is the main issue considered in this commentary. Interference is the blocking of phage infections as mediated in part by CRISPR spacer sequences. Adaptation, at least as narrowly defined, is the acquisition of these spacer sequences by CRISPR loci. Facilitation, in turn and as defined here, corresponds to phage-naïve bacteria avoiding death follow first-time exposure to specific phages, where bacterial survival of course is necessary for subsequent spacer acquisition. Working from a variety of perspectives, I argue that a requirement for facilitation suggests that CRISPR systems may play secondary rather than primary roles as bacterial defenses, particularly against more virulent phages. So considered, the role of facilitation in CRISPR functioning could be viewed as analogous to the building, in vertebrate animals, of adaptive immunity upon an immunological foundation comprised of mechanisms that are both more generally acting and innate.
doi:10.4161/bact.1.3.16709
PMCID: PMC3225783  PMID: 22164352
adaptation; adaptive immunity; CRISPR; innate immunity; restriction-modification
17.  Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses 
Bacteriophage  2011;1(2):94-100.
Soft-ripened cheeses belong to the type of food most often contaminated with Listeria monocytogenes, and they have been implicated in several outbreaks of listeriosis. Bacteriophages represent an attractive way to combat foodborne pathogens without affecting other properties of the food. We used the broad host range, virulent Listeria phage A511 for control of L. monocytogenes during the production and ripening phases of both types of soft-ripened cheeses, white mold (Camembert-type) cheese, as well as washed-rind cheese with a red-smear surface (Limburger-type). The surfaces of young, unripened cheese were inoculated with 101–103 cfu/cm2 L. monocytogenes strains Scott A (serovar 4b) or CNL 103/2005 (serovar 1/2a). Phage was applied at defined time points thereafter, in single or repeated treatments, at 3 × 108 or 1 × 109 pfu/cm2. With Scott A (103 cfu/cm2) and a single dose of A511 (3 × 108 pfu/cm2) on camembert-type cheese, viable counts dropped 2.5 logs at the end of the 21 day ripening period. Repeated phage application did not further inhibit the bacteria, whereas a single higher dose (1 × 109 pfu/cm2) was found to be more effective. On red-smear cheese ripened for 22 days, Listeria counts were down by more than 3 logs. Repeated application of A511 further delayed re-growth of Listeria, but did not affect bacterial counts after 22 days. With lower initial Listeria contamination (101–102 cfu/cm2), viable counts dropped below the limit of detection, corresponding to more than 6 logs reduction compared to the control. Our data clearly demonstrate the potential of bacteriophage for biocontrol of L. monocytogenes in soft cheese.
doi:10.4161/bact.1.2.15662
PMCID: PMC3278646  PMID: 22334865
Listeria monocytogenes; bacteriophage; food safety; soft-ripened cheese
18.  Pros and cons of phage therapy 
Bacteriophage  2011;1(2):111-114.
Many publications list advantages and disadvantages associated with phage therapy, which is the use of bacterial viruses to combat populations of nuisance or pathogenic bacteria. The goal of this commentary is to discuss many of those issues in a single location. In terms of “Pros,” for example, phages can be bactericidal, can increase in number over the course of treatment, tend to only minimally disrupt normal flora, are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria, often are easily discovered, seem to be capable of disrupting bacterial biofilms, and can have low inherent toxicities. In addition to these assets, we consider aspects of phage therapy that can contribute to its safety, economics, or convenience, but in ways that are perhaps less essential to the phage potential to combat bacteria. For example, autonomous phage transfer between animals during veterinary application could provide convenience or economic advantages by decreasing the need for repeated phage application, but is not necessarily crucial to therapeutic success. We also consider possible disadvantages to phage use as antibacterial agents. These “Cons,” however, tend to be relatively minor.
doi:10.4161/bact.1.2.14590
PMCID: PMC3278648  PMID: 22334867
alternative medicine; antibiotics; antimicrobial drugs; biocontrol; phage therapy
19.  Enumeration of bacteriophage particles 
Bacteriophage  2011;1(2):86-93.
Bacteriophages are increasingly being utilized and considered for various practical applications, ranging from decontaminating foods and inanimate surfaces to human therapy; therefore, it is important to determine their concentrations quickly and reliably. Traditional plaque assay (PA) is the current “gold standard” for quantitating phage titers. However, it requires at least 18 h before results are obtained, and they may be significantly influenced by various factors. Therefore, two alternative assays based on the quantitative real-time polymerase chain reaction (QPCR) and NanoSight Limited (NS) technologies were recently proposed for enumerating phage particles. The present study compared the three approaches' abilities to quantitate Listeria monocytogenes-, Escherichia coli O157:H7- and Yersinia pestis-specific lytic phages quickly and reproducibly. The average coefficient of variation (CVS) of the PA method including all three phages was 0.15. The reproducibility of the PA method decreased dramatically when multiple investigators performed the assays, and mean differences of as much as 0.33 log were observed. The QPC R method required costly equipment and the synthesis of phage-specific oligonucleotide primers, but it determined phage concentrations faster (within about 4 h) and more precisely than did PA (CVS = 0.13). NS technology required costly equipment, was less precise (CVS = 0.28) than the PA and QPCR methods, and only worked when the phages were suspended in clear medium. However, it provided results within 5 min. After the overall correlation is established with the PA method, either of the two assays may be useful for quickly and reproducibly determining phage concentrations.
doi:10.4161/bact.1.2.15456
PMCID: PMC3278645  PMID: 22334864
bacteriophage; phage; plaque assays; phage titer
20.  Phage treatment of human infections 
Bacteriophage  2011;1(2):66-85.
Phages as bactericidal agents have been employed for 90 years as a means of treating bacterial infections in humans as well as other species, a process known as phage therapy. In this review we explore both the early historical and more modern use of phages to treat human infections. We discuss in particular the little-reviewed French early work, along with the Polish, US, Georgian and Russian historical experiences. We also cover other, more modern examples of phage therapy of humans as differentiated in terms of disease. In addition, we provide discussions of phage safety, other aspects of phage therapy pharmacology, and the idea of phage use as probiotics.
doi:10.4161/bact.1.2.15845
PMCID: PMC3278644  PMID: 22334863
phage history; phage therapy; pharmacology; probiotics; safety; treatment of infectious disease
21.  Luminescence based enzyme-labeled phage (Phazyme) assays for rapid detection of Shiga toxin producing Escherichia coli serogroups 
Bacteriophage  2011;1(2):101-110.
Most diagnostic approaches for Shiga toxin producing Escherichia coli (STEC) have been designed to detect only serogroup O157 that causes a majority, but not all STEC related outbreaks in the United States. Therefore, there is a need to develop methodology that would enable the detection of other STEC serogroups that cause disease. Three bacteriophages (phages) that infect STEC serogroups O26, O103, O111, O145 and O157 were chemically labeled with horseradish peroxidase (HRP). The enzyme-labeled phages (Phazymes) were individually combined with a sampling device (a swab), STEC serogroup-specific immunomagnetic separation (IMS) beads, bacterial enrichment broth and luminescent HRP substrate, in a self-contained test device, while luminescence was measured in a hand-held luminometer.
The O26 and O157 Phazyme assays correctly identified more than 93% of the bacteria tested during this study, the O123 Phazyme assay identified 89.6%, while the O111 and O145 Phazyme assays correctly detected 82.4% and 75.9%, respectively. The decreased specificity of the O111 and O145 assays was related to the broad host ranges of the phages used in both assays. The Phazyme assays were capable of directly detecting between 105 and 106 CFU/ml in pure culture, depending on the serogroup. In food trials, the O157 Phazyme assay was able to detect E. coli O157:H7 in spinach consistently at levels of 1 CFU/g and occasionally at levels of 0.1 CFU/g. The assay detected 100 CFU/100 cm2 on swabbed meat samples and 102 CFU/100 ml in water samples. The Phazyme assay effectively detects most STEC in a simple and rapid manner, with minimal need for instrumentation to interpret the test result.
doi:10.4161/bact.1.2.15666
PMCID: PMC3278647  PMID: 22334866
Shiga toxin producing Escherichia coli (STEC); rapid detection; enzyme-labeled phages (Phazymes); horseradish peroxidase (HRP); swab; hand held luminometer
22.  In the beginning… 
Bacteriophage  2011;1(1):50-51.
doi:10.4161/bact.1.1.14070
PMCID: PMC3109447  PMID: 21687535
bacteriophage; Félix d'Herelle; immunity; Pasteur; plaque; lysis; discovery
23.  Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis 
Bacteriophage  2011;1(1):6-14.
Bacteriophage CMP1 is a member of the Siphoviridae family that infects specifically the plant-pathogen Clavibacter michiganensis subsp. michiganensis. The linear double- stranded DNA is terminally redundant and not circularly permuted. The complete nucleotide sequence of the bacteriophage CMP1 genome consists of 58,652 bp including the terminal redundant ends of 791 bp. The G+C content of the phage (57%) is significantly lower than that of its host (72.66%). 74 potential open reading frames were identified and annotated by different bioinformatic tools. Two large clusters which encode the early and the late functions could be identified which are divergently transcribed. There are only a few hypothetical gene products with conserved domains and significant similarity to sequences from the databases. Functional analyses confirmed the activity of four gene products, an endonuclease, an exonuclease, a single-stranded DNA binding protein and a thymidylate synthase. Partial genomic sequences of CN77, a phage of Clavibacter michiganensis subsp. nebraskensis, revealed a similar genome structure and significant similarities on the level of deduced amino acid sequences. An endolysin with peptidase activity has been identified for both phages, which may be good tools for disease control of tomato plants against Clavibacter infections.
doi:10.4161/bact.1.1.13873
PMCID: PMC3109448  PMID: 21687530
phage CMP1; phage CN77; clavibacter; genome sequence; endolysin
24.  Bacteriophage 
Bacteriophage  2011;1(1):1-2.
doi:10.4161/bact.1.1.15030
PMCID: PMC3109449  PMID: 21687529
25.  Phage or Phages 
Bacteriophage  2011;1(1):52-53.
doi:10.4161/bact.1.1.14354
PMCID: PMC3109450  PMID: 21687536
D'Herelle; English usage; history

Results 1-25 (29)