Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase 
Bacteriophage  2014;4:e28451.
This study describes the genome of temperate Siphoviridae phage DW2, which is routinely propagated on Staphylococcus aureus DPC5246. The 41941 bp genome revealed an open reading frame (ORF1) which has a high level of homology with members of the resolvase subfamily of site-specific serine recombinase, involved in chromosomal integration and excision. In contrast, the majority of staphylococcal phages reported to date encode tyrosine recombinases. Two putative genes encoded by phage DW2 (ORF15 and ORF24) were highly homologous to the NWMN0273 and NWMN0280 genes encoding virulence factors carried on the genome of ϕNM4, a prophage in the genome of S. aureus Newman. Phage DW2 also encodes proteins highly homologous to two well-characterized Staphylococcus aureus pathogenicity island derepressors encoded by the staphylococcal helper phage 80α indicating that it may similarly act as a helper phage for mobility of pathogenicity islands in S. aureus. This study also focused on the enzybiotic potential of phage DW2. The structure of the putative endolysin and tail hydrolase were investigated and used as the basis for a cloning strategy to create recombinant peptidoglycan hydrolyzing proteins. After overexpression in E. coli, four of these proteins (LysDW2, THDW2, CHAPE1-153, and CHAPE1-163) were demonstrated to have hydrolytic activity against peptidoglycan of S. aureus and thus represent novel candidates for exploitation as enzybiotics.
PMCID: PMC4124061  PMID: 25105056
bacteriophage; Staphylococcus; endolysin; virion-associated peptidoglycan hydrolase; virulence; serine recombinase
2.  In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK 
Bacteriophage  2011;1(4):198-206.
The aim of this study was to use comparative modeling to predict the three-dimensional structure of the CHAPK protein (cysteine, histidine-dependent amidohydrolase/peptidase domain of the LysK endolysin, derived from bacteriophage K). Iterative PSI-BLAST searches against the Protein Data Bank (PDB) and nonredundant (nr) databases were used to populate a multiple alignment for analysis using the T-Coffee Expresso server. A consensus Maximum Parsimony phylogenetic tree with a bootstrap analysis setting of 1,000 replicates was constructed using MEGA4. Structural templates relevant to our target (CHAPK) were identified, processed in Expresso and used to generate a 3D model in the alignment mode of SWISS-MODEL. These templates were also processed in the I-TASSER web server. A Staphylococcus saprophyticus CHAP domain protein, 2K3A, was identified as the structural template in both servers. The I-TASSER server generated the CHAPK model with the best bond geometries when analyzed using PROCHECK and the most logical organization of the structure. The predicted 3D model indicates that CHAPK has a papain-like fold. Circular dichroism spectropolarimetry also indicated that CHAPK has an αβ fold, which is consistent with the model presented. The putative active site maintained a highly conserved Cys54-His117-Glu134 charge relay and an oxyanion hole residue Asn136. The residue triplet, Cys-His-Glu, is known to be a viable proteolytic triad in which we predict the Cys residue is used in a nucleophilic attack on peptide bonds at a specific site in the pentaglycine cross bridge of staphylococcal cell wall peptidoglycan. Use of comparative modeling has allowed approximation of the 3D structure of CHAPK giving information on the structure and an insight into the binding and active site of the catalytic domain. This may facilitate its development as an alternative antibacterial agent.
PMCID: PMC3448105  PMID: 23050213
bacteriophage; CHAP; endolysin; in silico; peptidase; staphylococcus

Results 1-2 (2)