PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Thromboelastometry in veal calves to detect hemostatic variations caused by low doses of dexamethasone treatment 
Background
The illegal administration of hormones, steroids, β-agonists and other anabolic agents to productive livestock in the European Union continues, despite the long-term ban on their use and despite the measures provided under the directives to monitor certain substances and residues thereof in the interest of protecting consumer health and animal wellbeing. Often administered in low doses in the form of a drug cocktail, these compounds escape detection by common analytical techniques. The aim of this study was to determine whether low-dose dexamethasone administration (0.4 mg orally per day, for 20 days) in white-meat calves produced variations in blood coagulation, as measured by thromboelastometry. A second aim was to determine whether such variations could be valid in detecting illicit low-dose dexamethasone treatment.
Results
The study population was 42 Friesian calves kept under controlled conditions until 6 months of age. The calves were subdivided into 2 groups: a control group (group A, n = 28) and a group treated with dexamethasone (group B, n = 14) for 20 days beginning at 5 months of age. When compared against the age-matched control group, the dexamethasone-treated calves showed a significant increase in alpha angle, maximum clot firmness and a significant decrease in clot formation time on all thromboelastometric profiles (P < 0.05). The clotting time was significantly decreased on the in-TEM® profile but increased on the ex-TEM® and fib-TEM® profiles (P <0.05). The Receiver Operating Characteristic curves, plotted for the Maximum Clot Elasticity (MCE), had a cut-off value ≥488.23 mm for in-TEM® MCE [Se 85.7%, (95% CI 57.2-98.2); Sp 100% 96.43% (95% CI 81.7-99.9] and a cut-off value ≥63.94 mm for fib-TEM® MCE [Se 92.8 (95% CI 66.1-99.8); Sp 89.3% (95% CI 71.8-97.7)]. In order to increase the sensitivity of the test two parameters (in-TEM® and fib-TEM® MCE) were used as two parallel tests; subsequently, the sensitivity rose to a point value of 99% (95% CI 85.4-99.9).
Conclusions
Thromboelastometry identified a state of hypercoagulability in the dexamethasone-treated subjects. Furthemore, the results of this preliminary study suggest that TEM may be useful in the detection of illicit low-dose dexamethasone treatment.
doi:10.1186/1746-6148-9-55
PMCID: PMC3621520  PMID: 23531200
Veal calves; Dexamethasone; Illicit treatment; Thromboelastometry; Hypercoagulability
2.  The prevalence of atypical scrapie in sheep from positive flocks is not higher than in the general sheep population in 11 European countries 
Background
During the last decade, active surveillance for transmissible spongiform encephalopathies in small ruminants has been intensive in Europe. In many countries this has led to the detection of cases of atypical scrapie which, unlike classical scrapie, might not be contagious. EU legislation requires, that following detection of a scrapie case, control measures including further testing take place in affected flocks, including the culling of genotype susceptible to classical scrapie. This might result in the detection of additional cases. The aim of this study was to investigate the occurrence of additional cases in flocks affected by atypical scrapie using surveillance data collected in Europe in order to ascertain whether atypical scrapie, is contagious.
Results
Questionnaires were used to collect, at national level, the results of active surveillance and testing associated with flock outbreaks in 12 European countries. The mean prevalence of atypical scrapie was 5.5 (5.0-6.0) cases per ten thousand in abattoir surveillance and 8.1 (7.3-9.0) cases per ten thousand in fallen stock. By using meta-analysis, on 11 out of the 12 countries, we found that the probability of detecting additional cases of atypical scrapie in positive flocks was similar to the probability observed in animals slaughtered for human consumption (odds ratio, OR = 1.07, CI95%: 0.70-1.63) or among fallen stock (OR = 0.78, CI95%: 0.51-1.2). In contrast, when comparing the two scrapie types, the probability of detecting additional cases in classical scrapie positive flocks was significantly higher than the probability of detecting additional cases in atypical scrapie positive flocks (OR = 32.4, CI95%: 20.7-50.7).
Conclusions
These results suggest that atypical scrapie is not contagious or has a very low transmissibility under natural conditions compared with classical scrapie. Furthermore this study stressed the importance of standardised data collection to make good use of the analyses undertaken by European countries in their efforts to control atypical and classical scrapie.
doi:10.1186/1746-6148-6-9
PMCID: PMC2832631  PMID: 20137097

Results 1-2 (2)