PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Genotyping of Coxiella burnetii from domestic ruminants in northern Spain 
Background
Information on the genotypic diversity of Coxiella burnetii isolates from infected domestic ruminants in Spain is limited. The aim of this study was to identify the C. burnetii genotypes infecting livestock in Northern Spain and compare them to other European genotypes. A commercial real-time PCR targeting the IS1111a insertion element was used to detect the presence of C. burnetii DNA in domestic ruminants from Spain. Genotypes were determined by a 6-loci Multiple Locus Variable number tandem repeat analysis (MLVA) panel and Multispacer Sequence Typing (MST).
Results
A total of 45 samples from 4 goat herds (placentas, N = 4), 12 dairy cattle herds (vaginal mucus, individual milk, bulk tank milk, aerosols, N = 20) and 5 sheep flocks (placenta, vaginal swabs, faeces, air samples, dust, N = 21) were included in the study. Samples from goats and sheep were obtained from herds which had suffered abortions suspected to be caused by C. burnetii, whereas cattle samples were obtained from animals with reproductive problems compatible with C. burnetii infection, or consisted of bulk tank milk (BTM) samples from a Q fever surveillance programme. C. burnetii genotypes identified in ruminants from Spain were compared to those detected in other countries. Three MLVA genotypes were found in 4 goat farms, 7 MLVA genotypes were identified in 12 cattle herds and 4 MLVA genotypes were identified in 5 sheep flocks. Clustering of the MLVA genotypes using the minimum spanning tree method showed a high degree of genetic similarity between most MLVA genotypes. Overall 11 different MLVA genotypes were obtained corresponding to 4 different MST genotypes: MST genotype 13, identified in goat, sheep and cattle from Spain; MST genotype 18, only identified in goats; and, MST genotypes 8 and 20, identified in small ruminants and cattle, respectively. All these genotypes had been previously identified in animal and human clinical samples from several European countries, but some of the MLVA genotypes are described here for the first time.
Conclusions
Genotyping revealed a substantial genetic diversity among domestic ruminants from Northern Spain.
doi:10.1186/1746-6148-8-241
PMCID: PMC3528428  PMID: 23227921
Q fever; Ruminants; Genotyping; MLVA; MST; Spain
2.  Seroepidemiological study of Q fever in domestic ruminants in semi-extensive grazing systems 
Background
Q fever, a worldwide zoonotic disease caused by Coxiella burnetii, is endemic in northern Spain where it has been reported as responsible for large series of human pneumonia cases and domestic ruminants' reproductive disorders. To investigate pathogen exposure among domestic ruminants in semi-extensive grazing systems in northern Spain, a serosurvey was carried out in 1,379 sheep (42 flocks), 626 beef cattle (46 herds) and 115 goats (11 herds). Serum antibodies were analysed by ELISA and positive samples were retested by Complement Fixation test (CFT) to detect recent infections.
Results
ELISA anti-C. burnetii antibody prevalence was slightly higher in sheep (11.8 ± 2.0%) than in goats (8.7 ± 5.9%) and beef cattle (6.7 ± 2.0%). Herd prevalence was 74% for ovine, 45% for goat and 43% for bovine. Twenty-one percent of sheep flocks, 27% of goat and 14% of cattle herds had a C. burnetii seroprevalence ≥ 20%. Only 15 out of 214 ELISA-positive animals reacted positive by CFT. Age-associated seroprevalence differed between ruminant species with a general increasing pattern with age. No evidence of correlation between abortion history and seroprevalence rates was observed despite the known abortifacient nature of C. burnetii in domestic ruminants.
Conclusions
Results reported herein showed that sheep had the highest contact rate with C. burnetii in the region but also that cattle and goats should not be neglected as part of the domestic cycle of C. burnetii. This work reports basic epidemiologic patterns of C. burnetii in semi-extensive grazed domestic ruminants which, together with the relevant role of C. burnetii as a zoonotic and abortifacient agent, makes these results to concern both Public and Animal Health Authorities.
doi:10.1186/1746-6148-6-3
PMCID: PMC2831013  PMID: 20089188
3.  Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain 
Background
Listeria monocytogenes is among the most important foodborne bacterial pathogens due to the high mortality rate and severity of the infection. L. monocytogenes is a ubiquitous organism occasionally present in the intestinal tract of various animal species and faecal shedding by asymptomatically infected livestock poses a risk for contamination of farm environments and raw food at the pre-harvest stages. The aim of this study was to determine the prevalence and strain diversity of L. monocytogenes in healthy ruminants and swine herds.
Results
Faecal samples from 30 animals per herd were collected from 343 herds (120 sheep, 124 beef cattle, 82 dairy cattle and 17 swine) in the Basque Country and screened in pools by an automated enzyme-linked fluorescent immunoassay (VIDAS®) to estimate the prevalence of positive herds. Positive samples were subcultured onto the selective and differential agar ALOA and biochemically confirmed. L. monocytogenes was isolated from 46.3% of dairy cattle, 30.6% beef cattle and 14.2% sheep herds, but not from swine. Within-herd prevalence investigated by individually analysing 197 sheep and 221 cattle detected 1.5% of faecal shedders in sheep and 21.3% in cattle. Serotyping of 114 isolates identified complex 4b as the most prevalent (84.2%), followed by 1/2a (13.2%), and PFGE analysis of 68 isolates showed a highly diverse L. monocytogenes population in ruminant herds.
Conclusion
These results suggested that cattle represent a potentially important reservoir for L. monocytogenes in the Basque Country, and highlighted the complexity of pathogen control at the farm level.
doi:10.1186/1746-6148-5-2
PMCID: PMC2651128  PMID: 19133125
5.  Molecular diagnosis of Theileria and Babesia species infecting cattle in Northern Spain using reverse line blot macroarrays 
Background
Piroplasmosis in cattle is caused by tick-borne haemoprotozoan parasites of the genera Theileria and Babesia. Molecular detection techniques offer higher sensitivity and specificity than microscopy examination methods and serological tests. A reverse line blot (RLB) macroarray that included generic and species-specific probes for Theileria annulata, Theileria buffeli, Babesia bovis, Babesia bigemina, Babesia divergens and Babesia major was used to study the presence and identity of the piroplasm species infecting 263 bovine blood samples from 79 farms, most of them in Northern Spain. Microscopy examination of blood smears and haematology were also performed whenever possible to identify animals with parasitaemia.
Results
RLB hybridisation identified infection in 54.0% of the samples, whereas only 28.8% were positive by microscopy examination. The most frequently found species was T. buffeli, present in 42.6% of the samples. T. annulata was found in 22 samples (8.4%) from 12 farms, including 9 farms (14 samples) located in Northern Spain where presence of the vector is not very common. Babesia infections were less frequently detected: B. major was found in 3.0% of the samples, B. bigemina in 2.7%, B. bovis in 2.3% and B. divergens in 1.1%. Mixed infections were detected in 14 samples, accounting for six different combinations of species.
Conclusion
This is the first report in which B. major and B. divergens have been detected in Spain using molecular identification techniques and the first time that B. bovis has been detected in Northern Spain. The detection of T. annulata in Northern Spain suggests that the distribution of Mediterranean theileriosis might be changing. Samples with positive RLB hybridisation but negative microscopy had haematology values within the normal ranges suggesting that they corresponded to chronic carriers that may serve as reservoirs of the infection. In this sense, sensitive and specific laboratorial tests like RLB that clearly identify the parasite and can detect subclinical infections are essential to establish good control measures.
doi:10.1186/1746-6148-2-16
PMCID: PMC1482696  PMID: 16684356
6.  Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie 
Background
Cellular prion protein expression is essential for the development of transmissible spongiform encephalopathies (TSEs), and in sheep, genetic susceptibility to scrapie has been associated to PrP gene polymorphisms. To test the hypothetical linkage between PrP gene expression and genetic susceptibility, PrP mRNA levels were measured by real-time RT-PCR in six ovine tissues of animals with different genotypes.
Results
Previous to the PrP gene expression analysis the stability of several housekeeping (HK) genes was assessed in order to select the best ones for relative quantification. The normalisation of gene expression was carried out using a minimum of three HK genes in order to detect small expression differences more accurately than using a single control gene. The expression stability analysis of six HK genes showed a large tissue-associated variation reflecting the existence of tissue-specific factors. Thereby, a specific set of HK genes was required for an accurate normalisation of the PrP gene expression within each tissue. Statistical differences in the normalised PrP mRNA levels were found among the tissues, obtaining the highest expression level in obex, followed by ileum, lymph node, spleen, cerebellum and cerebrum. A tendency towards increased PrP mRNA levels and genetic susceptibility was observed in central nervous system. However, the results did not support the hypothesis that PrP mRNA levels vary between genotypes.
Conclusion
The results on PrP gene expression presented here provide valuable baseline data for future studies on scrapie pathogenesis. On the other hand, the results on stability data of several HK genes reported in this study could prove very useful in other gene expression studies carried out in these relevant ovine tissues.
doi:10.1186/1746-6148-1-3
PMCID: PMC1262732  PMID: 16188044

Results 1-6 (6)