Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)
Year of Publication
Document Types
1.  Regional gray matter correlates of vocational interests 
BMC Research Notes  2012;5:242.
Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations.
First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic (“blue-collar”) interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability.
Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.
PMCID: PMC3476449  PMID: 22591829
2.  Gray matter correlates of cognitive ability tests used for vocational guidance 
BMC Research Notes  2010;3:206.
Individual differences in cognitive abilities provide information that is valuable for vocational guidance, but there is an ongoing debate about the role of ability factors, including general intelligence (g), compared to individual tests. Neuroimaging can help identify brain parameters that may account for individual differences in both factors and tests. Here we investigate how eight tests used in vocational guidance correlate to regional gray matter. We compare brain networks identified by using scores for ability factors (general and specific) to those identified by using individual tests to determine whether these relatively broad and narrow approaches yield similar results.
Using MRI and voxel-based morphometry (VBM), we correlated gray matter with independent ability factors (general intelligence, speed of reasoning, numerical, spatial, memory) and individual test scores from a battery of cognitive tests completed by 40 individuals seeking vocational guidance. Patterns of gray matter correlations differed between group ability factors and individual tests. Moreover, tests within the same factor showed qualitatively different brain correlates to some degree.
The psychometric factor structure of cognitive tests can help identify brain networks related to cognitive abilities beyond a general intelligence factor (g). Correlates of individual ability tests with gray matter, however, appear to have some differences from the correlates for group factors.
PMCID: PMC2917438  PMID: 20649948
3.  MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task 
BMC Research Notes  2009;2:174.
Neuro-imaging studies demonstrate plasticity of cortical gray matter before and after practice for some motor and cognitive tasks in adults. Other imaging studies show functional changes after practice, but there is not yet direct evidence of how structural and functional changes may be related. A fundamental question is whether they occur at the same cortical sites, adjacent sites, or sites in other parts of a network.
Using a 3 T MRI, we obtained structural and functional images in adolescent girls before and after practice on a visual-spatial problem-solving computer game, Tetris. After three months of practice, compared to the structural scans of controls, the group with Tetris practice showed thicker cortex, primarily in two areas: left BAs 6 and 22/38. Based on fMRI BOLD signals, the Tetris group showed cortical activations throughout the brain while playing Tetris, but significant BOLD decreases, mostly in frontal areas, were observed after practice. None of these BOLD decreases, however, overlapped with the cortical thickness changes.
Regional cortical thickness changes were observed after three months of Tetris practice. Over the same period, brain activity decreases were observed in several other areas. These data indicate that structural change in one brain area does not necessarily result in functional change in the same location, at least on the levels assessed with these MRI methods.
PMCID: PMC2746806  PMID: 19723307

Results 1-3 (3)