Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Adjustment of familial relatedness in association test for rare variants 
BMC Proceedings  2014;8(Suppl 1):S39.
High-throughput sequencing technology allows researchers to test associations between phenotypes and all the variants identified throughout the genome, and is especially useful for analyzing rare variants. However, the statistical power to identify phenotype-associated rare variants is very low with typical genome-wide association studies because of their low allele frequencies among unrelated individuals. In contrast, a family-based design may have more power because rare variants are more likely to be enriched in families than among unrelated individuals. Regardless, an analysis of family-based association studies needs to account appropriately for relatedness between family members. We analyzed the observed quantitative trait systolic blood pressure as well as the simulated Q1 data in the Genetic Analysis Workshop 18 data set using 4 tests: (a) a single-variant test, (b) a collapsing test, (c) a single-variant test where familial relatedness was accounted for, and (d) a collapsing test where familial relatedness was accounted for. We then compared the results of the 4 methods and observed that adjusting for familial relatedness could appropriately control the false-positive rate while maintaining reasonable power to detect several strongly associated variants/genes.
PMCID: PMC4143885  PMID: 25519384
2.  A penalized linear mixed model for genomic prediction using pedigree structures 
BMC Proceedings  2014;8(Suppl 1):S67.
Genetic Analysis Workshop 18 provided a platform for evaluating genomic prediction power based on single-nucleotide polymorphisms from single-nucleotide polymorphism array data and sequencing data. Also, Genetic Analysis Workshop 18 provided a diverse pedigree structure to be explored in prediction. In this study, we attempted to combine pedigree information with single-nucleotide polymorphism data to predict systolic blood pressure. Our results suggested that the prediction power based on pedigree information only could be unsatisfactory. Using additional information such as single-nucleotide polymorphism genotypes would improve prediction accuracy. In particular, the improvement can be significant when there exist a few single-nucleotide polymorphisms with relatively larger effect sizes. We also compared the prediction performance based on genome-wide association study data (ie, common variants) and sequencing data (ie, common variants plus low-frequency variants). The experimental result showed that inclusion of low frequency variants could not lead to improvement of prediction accuracy.
PMCID: PMC4143686  PMID: 25519399
3.  Admixture mapping analysis in the context of GWAS with GAW18 data 
BMC Proceedings  2014;8(Suppl 1):S3.
Admixture mapping is a disease-mapping strategy to identify disease susceptibility variants in an admixed population that is a result of mating between 2 historically separated populations differing in allele frequencies and disease prevalence. With the increasing availability of high-density genotyping data generated in genome-wide association studies, it is of interest to investigate how to apply admixture mapping in the context of the genome-wide association studies and how to adjust for admixture in association tests. In this study, we first evaluated 3 different local ancestry inference methods, LAMP, LAMP-LD, and MULTIMIX. Then we applied admixture mapping analysis based on estimated local ancestry. Finally, we performed association tests with adjustment for local ancestry.
PMCID: PMC4143627  PMID: 25519317
4.  Collapsing-based and kernel-based single-gene analyses applied to Genetic Analysis Workshop 17 mini-exome data 
BMC Proceedings  2011;5(Suppl 9):S117.
Recently there has been great interest in identifying rare variants associated with common diseases. We apply several collapsing-based and kernel-based single-gene association tests to Genetic Analysis Workshop 17 (GAW17) rare variant association data with unrelated individuals without knowledge of the simulation model. We also implement modified versions of these methods using additional information, such as minor allele frequency (MAF) and functional annotation. For each of four given traits provided in GAW17, we use the Bayesian mixed-effects model to estimate the phenotypic variance explained by the given environmental and genotypic data and to infer an individual-specific genetic effect to use directly in single-gene association tests. After obtaining information on the GAW17 simulation model, we compare the performance of all methods and examine the top genes identified by those methods. We find that collapsing-based methods with weights based on MAFs are sensitive to the “lower MAF, larger effect size” assumption, whereas kernel-based methods are more robust when this assumption is violated. In addition, many false-positive genes identified by multiple methods often contain variants with exactly the same genotype distribution as the causal variants used in the simulation model. When the sample size is much smaller than the number of rare variants, it is more likely that causal and noncausal variants will share the same or similar genotype distribution. This likely contributes to the low power and large number of false-positive results of all methods in detecting causal variants associated with disease in the GAW17 data set.
PMCID: PMC3287841  PMID: 22373309
5.  Detecting functional rare variants by collapsing and incorporating functional annotation in Genetic Analysis Workshop 17 mini-exome data 
BMC Proceedings  2011;5(Suppl 9):S27.
Association studies using tag SNPs have been successful in detecting disease-associated common variants. However, common variants, with rare exceptions, explain only at most 5–10% of the heritability resulting from genetic factors, which leads to the common disease/rare variants assumption. Indeed, recent studies using sequencing technologies have demonstrated that common diseases can be due to rare variants that could not be systematically studied earlier. Unfortunately, methods for common variants are not optimal if applied to rare variants. To identify rare variants that affect disease risk, several investigators have designed new approaches based on the idea of collapsing different rare variants inside the same genomic block (e.g., the same gene or pathway) to enrich the signal. Here, we consider three different collapsing methods in the multimarker regression model and compared their performance on the Genetic Analysis Workshop 17 data using the consistency of results across different simulations and the cross-validation prediction error rate. The comparison shows that the proportion collapsing method seems to outperform the other two methods and can find both truly associated rare and common variants. Moreover, we explore one way of incorporating the functional annotations for the variants in the data that collapses nonsynonymous and synonymous variants separately to allow for different penalties on them. The incorporation of functional annotations led to higher sensitivity and specificity levels when the detection results were compared with the answer sheet. The initial analysis was performed without knowledge of the simulating model.
PMCID: PMC3287862  PMID: 22373324
6.  Use of Bayesian networks to dissect the complexity of genetic disease: application to the Genetic Analysis Workshop 17 simulated data 
BMC Proceedings  2011;5(Suppl 9):S37.
Complex diseases are often the downstream event of a number of risk factors, including both environmental and genetic variables. To better understand the mechanism of disease onset, it is of great interest to systematically investigate the crosstalk among various risk factors. Bayesian networks provide an intuitive graphical interface that captures not only the association but also the conditional independence and dependence structures among the variables, resulting in sparser relationships between risk factors and the disease phenotype than traditional correlation-based methods. In this paper, we apply a Bayesian network to dissect the complex regulatory relationships among disease traits and various risk factors for the Genetic Analysis Workshop 17 simulated data. We use the Bayesian network as a tool for the risk prediction of disease outcome.
PMCID: PMC3287873  PMID: 22373110
7.  Large-scale risk prediction applied to Genetic Analysis Workshop 17 mini-exome sequence data 
BMC Proceedings  2011;5(Suppl 9):S46.
We consider the application of Efron’s empirical Bayes classification method to risk prediction in a genome-wide association study using the Genetic Analysis Workshop 17 (GAW17) data. A major advantage of using this method is that the effect size distribution for the set of possible features is empirically estimated and that all subsequent parameter estimation and risk prediction is guided by this distribution. Here, we generalize Efron’s method to allow for some of the peculiarities of the GAW17 data. In particular, we introduce two ways to extend Efron’s model: a weighted empirical Bayes model and a joint covariance model that allows the model to properly incorporate the annotation information of single-nucleotide polymorphisms (SNPs). In the course of our analysis, we examine several aspects of the possible simulation model, including the identity of the most important genes, the differing effects of synonymous and nonsynonymous SNPs, and the relative roles of covariates and genes in conferring disease risk. Finally, we compare the three methods to each other and to other classifiers (random forest and neural network).
PMCID: PMC3287883  PMID: 22373389
8.  A pathway analysis applied to Genetic Analysis Workshop 16 genome-wide rheumatoid arthritis data 
BMC Proceedings  2009;3(Suppl 7):S91.
The identification of several hundred genomic regions affecting disease risk has proven the ability of genome-wide association studies have proven their ability to identify genetic contributors to disease. Currently, single-nucleotide polymorphism (SNP) association analysis is the most widely used method of genome-wide association data, but recent research shows that multi-marker tests of association may provide greater power, especially when more than one mutation is present within a gene and the mutations are in low linkage disequilibrium with each other. Here we use a multi-marker association test based on regression to SNPs located within known genes to obtain a gene-level score of association. We then perform pathway analysis using this score as a measure of gene importance. We use two tests of pathway enrichment - a binomial test and a random set method. By utilizing publicly available gene and pathway information, we identify B cell, cytokine and inflammation response, and antigen presentation pathways as being associated with rheumatoid arthritis. These results confirm known biological mechanisms for auto-immunity disorders, of which rheumatoid arthritis is one.
PMCID: PMC2795995  PMID: 20018088
9.  Two-stage joint selection method to identify candidate markers from genome-wide association studies 
BMC Proceedings  2009;3(Suppl 7):S29.
The interaction among multiple genes and environmental factors can affect an individual's susceptibility to disease. Some genes may not show strong marginal associations when they affect disease risk through interactions with other genes. As a result, these genes may not be identified by single-marker methods that are widely used in genome-wide association studies. To explore this possibility in real data, we carried out a two-stage model selection procedure of joint single-nucleotide polymorphism (SNP) analysis to detect genes associated with rheumatoid arthritis (RA) using Genetic Analysis Workshop 16 genome-wide association study data. In the first stage, the genetic markers were screened through an exhaustive two-dimensional search, through which promising SNP and SNP pairs were identified. Then, LASSO was used to choose putative SNPs from the candidates identified in the first stage. We then use the RA data collected by the Wellcome Trust Case Control Consortium to validate the putative genetic factors. Balancing computational load and statistical power, this method detects joint effects that may fail to emerge from single-marker analysis. Based on our proposed approach, we not only replicated the identification of important RA risk genes, but also found novel genes and their epistatic effects on RA. To our knowledge, this is the first two-dimensional scan based analysis for a real genome-wide association study.
PMCID: PMC2795926  PMID: 20018019
10.  Gene hunting of the Genetic Analysis Workshop 16 rheumatoid arthritis data using rough set theory 
BMC Proceedings  2009;3(Suppl 7):S126.
We propose to use the rough set theory to identify genes affecting rheumatoid arthritis risk from the data collected by the North American Rheumatoid Arthritis Consortium. For each gene, we employ generalized dynamic reducts in the rough set theory to select a subset of single-nucleotide polymorphisms (SNPs) to represent the genetic information from this gene. We then group the study subjects into different clusters based on their genotype similarity at the selected markers. Statistical association between disease status and cluster membership is then studied to identify genes associated with rheumatoid arthritis. Based on our proposed approach, we are able to identify a number of statistically significant genes associated with rheumatoid arthritis. Aside from genes on chromosome 6, our identified genes include known disease-associated genes such as PTPN22 and TRAF1. In addition, our list contains other biologically plausible genes, such as ADAM15 and AGPAT2. Our findings suggest that ADAM15 and AGPAT2 may contribute to a genetic predisposition through abnormal angiogenesis and adipose tissue.
PMCID: PMC2795899  PMID: 20017992
11.  The role of heritability in mapping expression quantitative trait loci 
BMC Proceedings  2007;1(Suppl 1):S86.
Gene expression, as a heritable complex trait, has recently been used in many genome-wide linkage studies. The estimated overall heritability of each trait may be considered as evidence of a genetic contribution to the total phenotypic variation, which implies the possibility of mapping genome regions responsible for the gene expression variation via linkage analysis. However, heritability has been found to be an inconsistent predictor of significant linkage signals. To investigate this issue in human studies, we performed genome-wide linkage analysis on the 3554 gene expression traits of 194 Centre d'Etude du Polymorphisme Humain individuals provided by Genetic Analysis Workshop 15. Out of the 422 expression traits with significant linkage signals identified (LOD > 5.3), 89 traits have low estimated heritability (h2 < 10%), among which 23 traits have an estimated heritability equal to 0. The linkage analysis on individual pedigree shows that the overall LOD scores may result from a few pedigrees with strong linkage signals. Screening gene expressions before linkage analysis using a relatively low heritability (h2 < 20%) may result in a loss of significant linkage signals, especially for trans-acting expression quantitative trait loci (49%).
PMCID: PMC2367577  PMID: 18466589

Results 1-11 (11)