Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
Year of Publication
Document Types
1.  Genotypic discrepancies arising from imputation 
BMC Proceedings  2014;8(Suppl 1):S17.
The ideal genetic analysis of family data would include whole genome sequence on all family members. A strategy of combining sequence data from a subset of key individuals with inexpensive, genome-wide association study (GWAS) chip genotypes on all individuals to infer sequence level genotypes throughout the families has been suggested as a highly accurate alternative. This strategy was followed by the Genetic Analysis Workshop 18 data providers. We examined the quality of the imputation to identify potential consequences of this strategy by comparing discrepancies between GWAS genotype calls and imputed calls for the same variants. Overall, the inference and imputation process worked very well. However, we find that discrepancies occurred at an increased rate when imputation was used to infer missing data in sequenced individuals. Although this may be an artifact of this particular instantiation of these analytic methods, there may be general genetic or algorithmic reasons to avoid trying to fill in missing sequence data. This is especially true given the risk of false positives and reduction in power for family-based transmission tests when founders are incorrectly imputed as heterozygotes. Finally, we note a higher rate of discrepancies when unsequenced individuals are inferred using sequenced individuals from other pedigrees drawn from the same admixed population.
PMCID: PMC4143754  PMID: 25519370
2.  Identifying cryptic population structure in multigenerational pedigrees in a Mexican American sample 
BMC Proceedings  2014;8(Suppl 1):S4.
Cryptic population structure can increase both type I and type II errors. This is particularly problematic in case-control association studies of unrelated individuals. Some researchers believe that these problems are obviated in families. We argue here that this may not be the case, especially if families are drawn from a known admixed population such as Mexican Americans. We use a principal component approach to evaluate and visualize the results of three different approaches to searching for cryptic structure in the 20 multigenerational families of the Genetic Analysis Workshop 18 (GAW18). Approach 1 uses all family members in the sample to identify what might be considered "outlier" kindreds. Because families are likely to differ in size (in the GAW18 families, there is about a 4-fold difference in the number of typed individuals), approach 2 uses a weighting system that equalizes pedigree size. Approach 3 concentrates on the founders and the "marry-ins" because, in principle, the entire pedigree can be reconstructed with knowledge of the sequence of these unrelated individuals and genome-wide association study (GWAS) data on everyone else (to identify the position of recombinations). We demonstrate that these three approaches can yield very different insights about cryptic structure in a sample of families.
PMCID: PMC4143674  PMID: 25519323
3.  Stratify or adjust? Dealing with multiple populations when evaluating rare variants 
BMC Proceedings  2011;5(Suppl 9):S101.
The unrelated individuals sample from Genetic Analysis Workshop 17 consists of a small number of subjects from eight population samples and genetic data composed mostly of rare variants. We compare two simple approaches to collapsing rare variants within genes for their utility in identifying genes that affect phenotype. We also compare results from stratified analyses to those from a pooled analysis that uses ethnicity as a covariate. We found that the two collapsing approaches were similarly effective in identifying genes that contain causative variants in these data. However, including population as a covariate was not an effective substitute for analyzing the subpopulations separately when only one subpopulation contained a rare variant linked to the phenotype.
PMCID: PMC3287824  PMID: 22373399
4.  Linkage analysis merging replicate phenotypes: an application to three quantitative phenotypes in two African samples 
BMC Proceedings  2011;5(Suppl 9):S81.
We report two approaches for linkage analysis of data consisting of replicate phenotypes. The first approach is specifically designed for the unusual (in human data) replicate structure of the Genetic Analysis Workshop 17 pedigree data. The second approach consists of a standard linkage analysis that, although not specifically tailored to data consisting of replicate genotypes, was envisioned as providing a sounding board against which our novel approach could be assessed. Both approaches are applied to the analysis of three quantitative phenotypes (Q1, Q2, and Q4) in two sets of African families. All analyses were carried out blind to the generating model (i.e., the “answers”). Using both methods, we found numerous significant linkage signals for Q1, although population colocalization was absent for most of these signals. The linkage analysis of Q2 and Q4 failed to reveal any strong linkage signals.
PMCID: PMC3287922  PMID: 22373343
5.  Power and false-positive rates for the restricted partition method (RPM) in a large candidate gene data set 
BMC Proceedings  2009;3(Suppl 7):S74.
Many phenotypes of public health importance (e.g., diabetes, coronary artery disease, major depression, obesity, and addictions to alcohol and nicotine) involve complex pathways of action. Interactions between genetic variants or between genetic variants and environmental factors likely play important roles in the functioning of these pathways. Unfortunately, complex interacting systems are likely to have important interacting factors that may not readily reveal themselves to univariate analyses. Instead, detecting the role of some of these factors may require analyses that are sensitive to interaction effects.
In this study, we evaluate the sensitivity and specificity of the restricted partition method (RPM) to detect signals related to coronary artery disease in the Genetic Analysis Workshop 16 Problem 3 data using the 50,000 k candidate gene single-nucleotide polymorphism set. Power and false-positive rates were evaluated using the first 100 replicate datasets. This included an exploration of the utility of using of all genotyped family members compared with selecting one member per family.
PMCID: PMC2795976  PMID: 20018069
6.  A search for non-chromosome 6 susceptibility loci contributing to rheumatoid arthritis 
BMC Proceedings  2009;3(Suppl 7):S15.
We conducted a search for non-chromosome 6 genes that may increase risk for rheumatoid arthritis (RA). Our approach was to retrospectively ascertain three "extreme" subsamples from the North American Rheumatoid Arthritis Consortium. The three subsamples are: 1) RA cases who have two low-risk HLA-DRB1 alleles (N = 18), 2) RA cases who have two high-risk HLA-DRB1 alleles (N = 163), and 3) controls who have two low-risk HLA-DRB1 alleles (N = 652). We hypothesized that since Group 1's RA was likely due to non-HLA related risk factors, and because Group 3, by definition, is unaffected, comparing Group 1 with Group 2 and Group 1 with Group 3 would result in the identification of candidate susceptibility loci located outside of the MHC region. Accordingly, we restricted our search to the 21 non-chromosome 6 autosomes. The case-case comparison of Groups 1 and 2 resulted in the identification of 17 SNPs with allele frequencies that differed at p < 0.0001. The case-control comparison of Groups 1 and 3 identified 23 SNPs that differed in allele frequency at p < 0.0001. Eight of these SNPs (rs10498105, rs2398966, rs7664880, rs7447161, rs2793471, rs2611279, rs7967594, and rs742605) were common to both lists.
PMCID: PMC2795911  PMID: 20018004
7.  Detecting population stratification using related individuals 
BMC Proceedings  2009;3(Suppl 7):S106.
Although identification of cryptic population stratification is necessary for case/control association analyses, it is also vital for linkage analyses and family-based association tests when founder genotypes are missing. However, including related individuals in an analysis such as EIGENSTRAT can result in bias; using only founders or one individual per pedigree results in loss of data and inaccurate estimates of stratification. We examine a generalization of principal-component analyses to allow for the inclusion of related individuals by down-weighting the significance of individual comparisons.
PMCID: PMC2795877  PMID: 20017970
8.  Linkage, case-control association, and family-based association tests for complex disorders 
BMC Proceedings  2007;1(Suppl 1):S43.
We carried out an analysis of the Genetic Analysis Workshop 15 simulated Problem 3 data. We restricted ourselves to the present/absent phenotype. Linkage analysis revealed a very strong signal on chromosome 6. Association analysis revealed additional susceptible loci located on chromosomes 11 and 18. The latter two signals were subsequently verified with linkage analysis – but only after 20 replicates were pooled. Analysis of linkage disequilibrium patterns, in concert with family-based association tests, led us to infer the presence of a second chromosome 6 locus located in the vicinity of single-nucleotide polymorphisms 160–162. These analyses were carried out without knowledge of the model used to generate the simulation.
PMCID: PMC2367550  PMID: 18466542
9.  Linkage and association analyses of principal components in expression data 
BMC Proceedings  2007;1(Suppl 1):S46.
Performing linkage and association analyses on a large set of correlated data presents an interesting set of problems. In the current setting, we have 3554 expression levels from lymphoblastoid cell lines in 194 individuals from 14 three-generation Utah CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees. We formed multivariate expression phenotypes from six sets of genes. These consisted of a set of genes identified by the data providers as showing common linkage to a region of chromosome 14, as well as five other sets suggested by ontological evidence. Using principal-component analyses, we generated seven quantitative phenotypes for expression levels from these six sets of genes. We performed quantitative genome linkage screens on these traits using the expression traits from the third generation of each pedigree. As expected, the strongest linkage signal was achieved when the trait under analysis was the composite of the expressions of genes previously showing linkage to chromosome 14. In particular, this trait produced a LOD score of 5.2 on chromosome 14. The trait also produced LOD scores over 3.5 on chromosomes 1, 7, 9, and 11; this suggests that these genes may be controlled by additional genetic factors on the genome. Subsequent association analyses on the first two generations of these pedigrees identified two polymorphisms on chromosome 11 as significant after correcting for multiple tests. These results suggest that principal-component analyses are useful for the analysis of pleiotropic loci. Furthermore, we have identified two single-nucleotide polymorphisms that may influence the expression of multiple genes linked to chromosome 14.
PMCID: PMC2367470  PMID: 18466545
10.  Gene × gene and gene × environment interactions for complex disorders 
BMC Proceedings  2007;1(Suppl 1):S72.
The restricted partition method (RPM) provides a way to detect qualitative factors (e.g. genotypes, environmental exposures) associated with variation in quantitative or binary phenotypes, even if the contribution is predominantly an interaction displaying little or no signal in univariate analyses. The RPM provides a model (possibly non-linear) of the relationship between the predictor covariates and the phenotype as well as measures of statistical and clinical significance for the model.
Blind to the generating model, we used the RPM to screen a data set consisting 1500 unrelated cases and 2000 unrelated controls from Replicate 1 of the Genetic Analysis Workshop 15 Problem 3 data for genetic and environmental factors contributing to rheumatoid arthritis (RA) risk. Both univariate and pair-wise analyses were performed using sex, smoking, parental DRB1 HLA microsatellite alleles, and 9187 single-nucleotide polymorphisms genotypes from across the genome. With this approach we correctly identified three genetic loci contributing directly to RA risk, and one quantitative trait locus for the endophenotype IgM level. We did not mistakenly identify any factors not in the generating model. All the factors we found were detectable with univariate RPM analyses. We failed to identify two genetic loci modifying the risk of RA. After breaking the blind, we examined the true modeling factors in the first 50 data replicates and found that we would not have identified the additional factors as important even had we combined all the data from the first 50 replicates in a single data set.
PMCID: PMC2367466  PMID: 18466574

Results 1-10 (10)