PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Population structure at different minor allele frequency levels 
BMC Proceedings  2014;8(Suppl 1):S55.
Inferring population genetic structure from large-scale genotyping of single-nucleotide polymorphisms or variants is an important technique for studying the history and distribution of extant human populations, but it is also a very important tool for adjusting tests of association. However, the structures inferred depend on the minor allele frequency of the variants; this is very important when considering the phenotypic association of rare variants.
Using the Genetic Analysis Workshop 18 data set for 142 unrelated individuals, which includes genotypes for many rare variants, we study the following hypothesis: the difference in detected structure is the result of a "scale" effect; that is, rare variants are likely to be shared only locally (smaller scale), while common variants can be spread over longer distances. The result is similar to that of using kernel principal component analysis, as the bandwidth of the kernel is changed. We show how different structures become evident as we consider rare or common variants.
doi:10.1186/1753-6561-8-S1-S55
PMCID: PMC4143691  PMID: 25519390
2.  Rare variant density across the genome and across populations 
BMC Proceedings  2011;5(Suppl 9):S39.
Next-generation sequencing allows for a new focus on rare variant density for conducting analyses of association to disease and for narrowing down the genomic regions that show evidence of functionality. In this study we use the 1000 Genomes Project pilot data as distributed by Genetic Analysis Workshop 17 to compare rare variant densities across seven populations. We made the comparisons using regressions of rare variants on total variant counts per gene for each population and Tajima’s D values calculated for each gene in each population, using data on 3,205 genes. We found that the populations clustered by continent for both the regression slopes and Tajima’s D values, with the African populations (Yoruba and Luhya) showing the highest density of rare variants, followed by the Asian populations (Han and Denver Chinese followed by the Japanese) and the European populations (CEPH [European-descent] and Tuscan) with the lowest densities. These significant differences in rare variant densities across populations seem to translate to measures of the rare variant density more commonly used in rare variant association analyses, suggesting the need to adjust for ancestry in such analyses. The selection signal was high for AHNAK, HLA-A, RANBP2, and RGPD4, among others. RANBP2 and RGPD4 showed a marked difference in rare variant density and potential selection between the Luhya and the other populations. This may suggest that differences between populations should be considered when delimiting genomic regions according to functionality and that these differences can create potential for disease heterogeneity.
doi:10.1186/1753-6561-5-S9-S39
PMCID: PMC3287875  PMID: 22373165
3.  Defining genetic determinants of the Metabolic Syndrome in the Framingham Heart Study using association and structural equation modeling methods 
BMC Proceedings  2009;3(Suppl 7):S50.
The Metabolic Syndrome (MetSyn), which is a clustering of traits including insulin resistance, obesity, hypertension and dyslipidemia, is estimated to have a substantial genetic component, yet few specific genetic targets have been identified. Factor analysis, a sub-type of structural equation modeling (SEM), has been used to model the complex relationships in MetSyn. Therefore, we aimed to define the genetic determinants of MetSyn in the Framingham Heart Study (Offspring Cohort, Exam 7) using the Affymetrix 50 k Human Gene Panel and three different approaches: 1) an association-based "one-SNP-at-a-time" analysis with MetSyn as a binary trait using the World Health Organization criteria; 2) an association-based "one-SNP-at-a-time" analysis with MetSyn as a continuous trait using second-order factor scores derived from four first-order factors; and, 3) a multivariate SEM analysis with MetSyn as a continuous, second-order factor modeled with multiple putative genes, which were represented by latent constructs defined using multiple SNPs in each gene. Results were similar between approaches in that CSMD1 SNPs were associated with MetSyn in Approaches 1 and 2; however, the effects of CSMD1 diminished in Approach 3 when modeled simultaneously with six other genes, most notably CETP and STARD13, which were strongly associated with the Lipids and MetSyn factors, respectively. We conclude that modeling multiple genes as latent constructs on first-order trait factors, most proximal to the gene's function with limited paths directly from genes to the second-order MetSyn factor, using SEM is the most viable approach toward understanding overall gene variation effects in the presence of multiple putative SNPs.
PMCID: PMC2795950  PMID: 20018043

Results 1-3 (3)