Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Methods for adjusting population structure and familial relatedness in association test for collective effect of multiple rare variants on quantitative traits 
BMC Proceedings  2011;5(Suppl 9):S35.
Because of the low frequency of rare genetic variants in observed data, the statistical power of detecting their associations with target traits is usually low. The collapsing test of collective effect of multiple rare variants is an important and useful strategy to increase the power; in addition, family data may be enriched with causal rare variants and therefore provide extra power. However, when family data are used, both population structure and familial relatedness need to be adjusted for the possible inflation of false positives. Using a unified mixed linear model and family data, we compared six methods to detect the association between multiple rare variants and quantitative traits. Through the analysis of 200 replications of the quantitative trait Q2 from the Genetic Analysis Workshop 17 data set simulated for 697 subjects from 8 extended families, and based on quantile-quantile plots under the null and receiver operating characteristic curves, we compared the false-positive rate and power of these methods. We observed that adjusting for pedigree-based kinship gives the best control for false-positive rate, whereas adjusting for marker-based identity by state slightly outperforms in terms of power. An adjustment based on a principal components analysis slightly improves the false-positive rate and power. Taking into account type-1 error, power, and computational efficiency, we find that adjusting for pedigree-based kinship seems to be a good choice for the collective test of association between multiple rare variants and quantitative traits using family data.
PMCID: PMC3287871  PMID: 22373066
2.  Distance-based phenotypic association analysis of DNA sequence data 
BMC Proceedings  2011;5(Suppl 9):S54.
As the cost of sequencing decreases, the demand for association tests that use exhaustive DNA sequence information increases. One such association test is multivariate distance matrix regression (MDMR). We explore some of the features of MDMR using Genetic Analysis Workshop 17 simulated data in search of potential improvements in distance measures. We used genotype data from 697 unrelated individuals, in 200 replications, to test the power of MDMR to detect 13 trait Q2 causative genes based on the Euclidean distance metric. We also estimated the false-positive rate of MDMR using 508 control genes. In addition, we compared MDMR with Mantel’s test and collapsing analysis for rare variants. MDMR performed comparably well even with the Euclidean distance measure.
PMCID: PMC3287892  PMID: 22373107
3.  Detecting disease rare alleles using single SNPs in families and haplotyping in unrelated subjects from the Genetic Analysis Workshop 17 data 
BMC Proceedings  2011;5(Suppl 9):S96.
We present an evaluation of discovery power for two association tests that work well with common alleles but are applied to the Genetic Analysis Workshop 17 simulations with rare causative single-nucleotide polymorphisms (SNPs) (minor allele frequency [MAF] < 1%). The methods used were genome-wide single-SNP association tests based on a linear mixed-effects model for discovery and applied to the familial sample and sliding windows haplotype association tests for replication, implemented within causative genes in the unrelated individuals sample. Both methods are evaluated with respect to the simulated trait Q2. The linear mixed-effects model and haplotype association tests failed to detect the rare alleles of the simulated associations. In contrast, the linear mixed-effects model and haplotype association tests detected effects for the most important simulated SNPs with MAF > 1%. We conclude that these findings reflect inadequate statistical power (the result of small simulated samples) for the complex genetic model that underlies these data.
PMCID: PMC3287938  PMID: 22373254
4.  A framework for analyzing both linkage and association: an analysis of Genetic Analysis Workshop 16 simulated data 
BMC Proceedings  2009;3(Suppl 7):S98.
We examine a Bayesian Markov-chain Monte Carlo framework for simultaneous segregation and linkage analysis in the simulated single-nucleotide polymorphism data provided for Genetic Analysis Workshop 16. We conducted linkage only, linkage and association, and association only tests under this framework. We also compared these results with variance-component linkage analysis and regression analyses. The results indicate that the method shows some promise, but finding genes that have very small (<0.1%) contributions to trait variance may require additional sources of information. All methods examined fared poorly for the smallest in the simulated "polygene" range (h2 of 0.0015 to 0.0002).
PMCID: PMC2796002  PMID: 20018095
5.  The Genetic Analysis Workshop 16 Problem 3: simulation of heritable longitudinal cardiovascular phenotypes based on actual genome-wide single-nucleotide polymorphisms in the Framingham Heart Study 
BMC Proceedings  2009;3(Suppl 7):S4.
The Genetic Analysis Workshop (GAW) 16 Problem 3 comprises simulated phenotypes emulating the lipid domain and its contribution to cardiovascular disease risk. For each replication there were 6,476 subjects in families from the Framingham Heart Study (FHS), with their actual genotypes for Affymetrix 550 k single-nucleotide polymorphisms (SNPs) and simulated phenotypes. Phenotypes are simulated at three visits, 10 years apart. There are up to 6 "major" genes influencing variation in high- and low-density lipoprotein cholesterol (HDL, LDL), and triglycerides (TG), and 1,000 "polygenes" simulated for each trait. Some polygenes have pleiotropic effects. The locus-specific heritabilities of the major genes range from 0.1 to 1.0%, under additive, dominant, or overdominant modes of inheritance. The locus-specific effects of the polygenes ranged from 0.002 to 0.15%, with effect sizes selected from negative exponential distributions. All polygenes act independently and have additive effects. Individuals in the LDL upper tail were designated medicated. Subjects medicated increased across visits at 2%, 5%, and 15%. Coronary artery calcification (CAC) was simulated using age, lipid levels, and CAC-specific polymorphisms. The risk of myocardial infarction before each visit was determined by CAC and its interactions with smoking and two genetic loci. Smoking was simulated to be commensurate with rates reported by the Centers for Disease Control. Two hundred replications were simulated.
PMCID: PMC2795938  PMID: 20018031
6.  Longitudinal trends in the association of metabolic syndrome with 550 k single-nucleotide polymorphisms in the Framingham Heart Study 
BMC Proceedings  2009;3(Suppl 7):S116.
We investigated the association of metabolic syndrome (MetS) with a 500 k and a 50 k single-nucleotide polymorphism (SNP) gene chip in the Framingham Heart Study. We cross-sectionally evaluated the MetS longitudinal trends. Data analyzed were from the Offspring Cohort (four exams: first (n = 2,441), third (n = 2,185), fifth (n = 2,308), and seventh (n = 2,328)) and the Generation 3 Cohort (one exam: the first exam (n = 3,997)). The prevalence of MetS was determined using the National Cholesterol Education Program Adult Treatment Panel III diagnostic criteria, modified with a newly developed correction for medication use. The association test between an SNP and MetS was performed with a generalized estimating equations method under the additive genetic model. Multiple-testing corrections were also performed. The prevalence of MetS in the offspring cohort increased from one visit to the next, and reached the highest point by the seventh exam comparable with the prevalence reported for the general US population. The pattern of the MetS prevalence over time also reflected itself in the association tests, in which the highest significances were seen in the fifth and seventh exams. The association tests showed that SNPs within genes PRDM16, CETP, PTHB1, PAPPA, and FBN3, and also some SNPs not in genes were significant or close to significance at the genome-wide thresholds. These findings are important in terms of eventually identifying with the causal loci for MetS.
PMCID: PMC2795888  PMID: 20017981
7.  Rheumatoid arthritis, item response theory, Blom transformation, and mixed models 
BMC Proceedings  2007;1(Suppl 1):S116.
We studied rheumatoid arthritis (RA) in the North American Rheumatoid Arthritis Consortium (NARAC) data (1499 subjects; 757 families). Identical methods were applied for studying RA in the Genetic Analysis Workshop 15 (GAW15) simulated data (with a prior knowledge of the simulation answers). Fifty replications of GAW15 simulated data had 3497 ± 20 subjects in 1500 nuclear families. Two new statistical methods were applied to transform the original phenotypes on these data, the item response theory (IRT) to create a latent variable from nine classifying predictors and a Blom transformation of the anti-CCP (anti-cyclic citrinullated protein) variable. We performed linear mixed-effects (LME) models to study the additive associations of 404 Illumina-genotyped single-nucleotide polymorphisms (SNPs) on the NARAC data, and of 17,820 SNPs of the GAW15 simulated data. In the GAW15 simulated data, the association with anti-CCP Blom transformation showed a 100% sensitivity for SNP1 located in the major histocompatibility complex gene. In contrast, the association of SNP1 with the IRT latent variable showed only 24% sensitivity. From the simulated data, we conclude that the Blom transformation of the anti-CCP variable produced more reliable results than the latent variable from the qualitative combination of a group of RA risk factors. In the NARAC data, the significant RA-SNPs associations found with both phenotype-transformation methods provided a trend that may point toward dynein and energy control genes. Finer genotyping in the NARAC data would grant more exact evidence for the contributions of chromosome 6 to RA.
PMCID: PMC2367565  PMID: 18466457

Results 1-7 (7)