Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Estimating heritability using family and unrelated individuals data 
BMC Proceedings  2011;5(Suppl 9):S34.
For the family data from Genetic Analysis Workshop 17, we obtained heritability estimates of quantitative traits Q1 and Q4 using the ASSOC program in the S.A.G.E. software package. ASSOC is a family-based method that estimates heritability through the estimation of variance components. The covariate-adjusted mean heritability was 0.650 for Q1 and 0.745 for Q4. For the unrelated individuals data, we estimated the heritability of Q1 as the proportion of total variance that can be accounted for by all single-nucleotide polymorphisms under an additive model. We examined a novel ordinary least-squares method, a naïve restricted maximum-likelihood method, and a calibrated restricted maximum-likelihood method. We applied the different methods to all 200 replicates for Q1. We observed that the ordinary least-squares method yielded many estimates outside the interval [0, 1]. The restricted maximum-likelihood estimates were more stable than the ordinary least-squares estimates. The naïve restricted maximum-likelihood method yielded an average estimate of 0.462 ± 0.1, and the calibrated restricted maximum-likelihood method yielded an average of 0.535 ± 0.121. Our results demonstrate discrepancies in heritability estimates using the family data and the unrelated individuals data.
PMCID: PMC3287870  PMID: 22373039
2.  A method to detect single-nucleotide polymorphisms accounting for a linkage signal using covariate-based affected relative pair linkage analysis 
BMC Proceedings  2011;5(Suppl 9):S84.
We evaluate an approach to detect single-nucleotide polymorphisms (SNPs) that account for a linkage signal with covariate-based affected relative pair linkage analysis in a conditional-logistic model framework using all 200 replicates of the Genetic Analysis Workshop 17 family data set. We begin by combining the multiple known covariate values into a single variable, a propensity score. We also use each SNP as a covariate, using an additive coding based on the number of minor alleles. We evaluate the distribution of the difference between LOD scores with the propensity score covariate only and LOD scores with the propensity score covariate and a SNP covariate. The inclusion of causal SNPs in causal genes increases LOD scores more than the inclusion of noncausal SNPs either within causal genes or outside causal genes. We compare the results from this method to results from a family-based association analysis and conclude that it is possible to identify SNPs that account for the linkage signals from genes using a SNP-covariate-based affected relative pair linkage approach.
PMCID: PMC3287925  PMID: 22373405
3.  Capability of common SNPs to tag rare variants 
BMC Proceedings  2011;5(Suppl 9):S88.
Genome-wide association studies are based on the linkage disequilibrium pattern between common tagging single-nucleotide polymorphisms (SNPs) (i.e., SNPs having only common alleles) and true causal variants, and association studies with rare SNP alleles aim to detect rare causal variants. To better understand and explain the findings from both types of studies and to provide clues to improve the power of an association study with only common SNPs genotyped, we study the correlation between common SNPs and the presence of rare alleles within a region in the genome and look at the capability of common SNPs in strong linkage disequilibrium with each other to capture single rare alleles. Our results indicate that common SNPs can, to some extent, tag the presence of rare alleles and that including SNPs in strong linkage disequilibrium with each other among the tagging SNPs helps to detect rare alleles.
PMCID: PMC3287929  PMID: 22373521
4.  Genome-wide analysis of haplotype interaction for the data from the North American Rheumatoid Arthritis Consortium 
BMC Proceedings  2009;3(Suppl 7):S34.
Recent genome-wide association studies on several complex diseases have focused on individual single-nucleotide polymorphism (SNP) analysis; however, not many studies have reported interactions among genes perhaps because the gene-gene and gene-environment interaction analysis could be infeasible due to heavy computing requirements. In this study we propose a new strategy for exploring the interactions among haplotypes. The proposed method consists of two steps. Step 1 tests the single-SNP association of whole genome with multiple testing corrections and finds the haplotype blocks of the significant SNPs. Step 2 performs interaction analysis of haplotypes within blocks. Our proposed method is applied to the rheumatoid arthritis data for Genetic Analysis Workshop 16.
PMCID: PMC2795932  PMID: 20018025
5.  Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm 
BMC Proceedings  2007;1(Suppl 1):S69.
Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.
PMCID: PMC2367540  PMID: 18466570

Results 1-5 (5)