PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Identifying rare variants from exome scans: the GAW17 experience 
BMC Proceedings  2011;5(Suppl 9):S1.
Genetic Analysis Workshop 17 (GAW17) provided a platform for evaluating existing statistical genetic methods and for developing novel methods to analyze rare variants that modulate complex traits. In this article, we present an overview of the 1000 Genomes Project exome data and simulated phenotype data that were distributed to GAW17 participants for analyses, the different issues addressed by the participants, and the process of preparation of manuscripts resulting from the discussions during the workshop.
doi:10.1186/1753-6561-5-S9-S1
PMCID: PMC3287821  PMID: 22373325
2.  Pathway analysis following association study 
BMC Proceedings  2011;5(Suppl 9):S18.
Genome-wide association studies often emphasize single-nucleotide polymorphisms with the smallest p-values with less attention given to single-nucleotide polymorphisms not ranked near the top. We suggest that gene pathways contain valuable information that can enable identification of additional associations. We used gene set information to identify disease-related pathways using three methods: gene set enrichment analysis (GSEA), empirical enrichment p-values, and Ingenuity pathway analysis (IPA). Association tests were performed for common single-nucleotide polymorphisms and aggregated rare variants with traits Q1 and Q4. These pathway methods were evaluated by type I error, power, and the ranking of the VEGF pathway, the gene set used in the simulation model. GSEA and IPA had high power for detecting the VEGF pathway for trait Q1 (91.2% and 93%, respectively). These two methods were conservative with deflated type I errors (0.0083 and 0.0072, respectively). The VEGF pathway ranked 1 or 2 in 123 of 200 replicates using IPA and ranked among the top 5 in 114 of 200 replicates for GSEA. The empirical enrichment method had lower power and higher type I error. Thus pathway analysis approaches may be useful in identifying biological pathways that influence disease outcomes.
doi:10.1186/1753-6561-5-S9-S18
PMCID: PMC3287852  PMID: 22373100
3.  Two-stage approach for identifying single-nucleotide polymorphisms associated with rheumatoid arthritis using random forests and Bayesian networks 
BMC Proceedings  2007;1(Suppl 1):S56.
We used the simulated data set from Genetic Analysis Workshop 15 Problem 3 to assess a two-stage approach for identifying single-nucleotide polymorphisms (SNPs) associated with rheumatoid arthritis (RA). In the first stage, we used random forests (RF) to screen large amounts of genetic data using the variable importance measure, which takes into account SNP interaction effects as well as main effects without requiring model specification. We used the simulated 9187 SNPs mimicking a 10 K SNP chip, along with covariates DR (the simulated DRB1 gentoype), smoking, and sex as input to the RF analyses with a training set consisting of 750 unrelated RA cases and 750 controls. We used an iterative RF screening procedure to identify a smaller set of variables for further analysis. In the second stage, we used the software program CaMML for producing Bayesian networks, and developed complex etiologic models for RA risk using the variables identified by our RF screening procedure. We evaluated the performance of this method using independent test data sets for up to 100 replicates.
PMCID: PMC2367609  PMID: 18466556

Results 1-3 (3)