PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Smoking in preeclamptic women is associated with higher birthweight for gestational age and lower soluble fms-like tyrosine kinase-1 levels: a nested case control study 
Background
Smoking paradoxically increases the risk of small-for-gestational-age (SGA) birth but protects against preeclampsia. Some studies have reported a "U-shaped" distribution of fetal growth in preeclamptic pregnancies, but reasons for this are unknown. We investigated whether cigarette smoking interacts with preeclampsia to affect fetal growth, and compared levels of soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating anti-angiogenic protein, in preeclamptic smokers and non-smokers.
Methods
From a multicenter cohort of 5337 pregnant women, we prospectively identified 113 women who developed preeclampsia (cases) and 443 controls. Smoking exposure was assessed by self-report and maternal hair nicotine levels. Fetal growth was assessed as z-score of birthweight for gestational age (BWGA). sFlt-1 was measured in plasma samples collected at the 24-26-week visit.
Results
In linear regression, smoking and preeclampsia were each associated with lower BWGA z-scores (β = -0.29; p = 0.008, and β = -0.67; p < 0.0001), but positive interaction was observed between smoking and preeclampsia (β = +0.86; p = 0.0008) such that smoking decreased z-score by -0.29 in controls but increased it by +0.57 in preeclampsia cases. Results were robust to substituting log hair nicotine for self-reported smoking and after adjustment for confounding variables. Mean sFlt-1 levels were lower in cases with hair nicotine levels above vs. below the median (660.4 pg/ml vs. 903.5 pg/ml; p = 0.0054).
Conclusions
Maternal smoking seems to protect against preeclampsia-associated fetal growth restriction and may account, at least partly, for the U-shaped pattern of fetal growth described in preeclamptic pregnancies. Smoking may exert this effect by reducing levels of the anti-angiogenic protein sFlt-1.
doi:10.1186/1471-2393-11-91
PMCID: PMC3248362  PMID: 22074109
2.  The joint influence of marital status, interpregnancy interval, and neighborhood on small for gestational age birth: a retrospective cohort study 
Background
Interpregnancy interval (IPI), marital status, and neighborhood are independently associated with birth outcomes. The joint contribution of these exposures has not been evaluated. We tested for effect modification between IPI and marriage, controlling for neighborhood.
Methods
We analyzed a cohort of 98,330 live births in Montréal, Canada from 1997–2001 to assess IPI and marital status in relation to small for gestational age (SGA) birth. Births were categorized as subsequent-born with short (<12 months), intermediate (12–35 months), or long (36+ months) IPI, or as firstborn. The data had a 2-level hierarchical structure, with births nested in 49 neighborhoods. We used multilevel logistic regression to obtain adjusted effect estimates.
Results
Marital status modified the association between IPI and SGA birth. Being unmarried relative to married was associated with SGA birth for all IPI categories, particularly for subsequent births with short (odds ratio [OR] 1.60, 95% confidence interval [CI] 1.31–1.95) and intermediate (OR 1.48, 95% CI 1.26–1.74) IPIs. Subsequent births had a lower likelihood of SGA birth than firstborns. Intermediate IPIs were more protective for married (OR 0.50, 95% CI 0.47–0.54) than unmarried mothers (OR 0.65, 95% CI 0.56–0.76).
Conclusion
Being unmarried increases the likelihood of SGA birth as the IPI shortens, and the protective effect of intermediate IPIs is reduced in unmarried mothers. Marital status should be considered in recommending particular IPIs as an intervention to improve birth outcomes.
doi:10.1186/1471-2393-8-7
PMCID: PMC2268912  PMID: 18307804
3.  Reexamining the effects of gestational age, fetal growth, and maternal smoking on neonatal mortality 
Background
Low birth weight (<2,500 g) is a strong predictor of infant mortality. Yet low birth weight, in isolation, is uninformative since it is comprised of two intertwined components: preterm delivery and reduced fetal growth. Through nonparametric logistic regression models, we examine the effects of gestational age, fetal growth, and maternal smoking on neonatal mortality.
Methods
We derived data on over 10 million singleton live births delivered at ≥ 24 weeks from the 1998–2000 U.S. natality data files. Nonparametric multivariable logistic regression based on generalized additive models was used to examine neonatal mortality (deaths within the first 28 days) in relation to fetal growth (gestational age-specific standardized birth weight), gestational age, and number of cigarettes smoked per day. All analyses were further adjusted for the confounding effects due to maternal age and gravidity.
Results
The relationship between standardized birth weight and neonatal mortality is nonlinear; mortality is high at low z-score birth weights, drops precipitously with increasing z-score birth weight, and begins to flatten for heavier infants. Gestational age is also strongly associated with mortality, with patterns similar to those of z-score birth weight. Although the direct effect of smoking on neonatal mortality is weak, its effects (on mortality) appear to be largely mediated through reduced fetal growth and, to a lesser extent, through shortened gestation. In fact, the association between smoking and reduced fetal growth gets stronger as pregnancies approach term.
Conclusions
Our study provides important insights regarding the combined effects of fetal growth, gestational age, and smoking on neonatal mortality. The findings suggest that the effect of maternal smoking on neonatal mortality is largely mediated through reduced fetal growth.
doi:10.1186/1471-2393-4-22
PMCID: PMC535930  PMID: 15574192
4.  Analysis of neonatal mortality:is standardizing for relative birth weight biased? 
Background
Infant mortality has traditionally been analyzed as a function of birth weight and birth weight-specific mortality. Often, however, when comparing two populations, the population with higher overall mortality has lower mortality at low birth weights and a reversed pattern at higher birth weights. Methods standardizing birth weight, such as the "relative birth weight", have been proposed to eliminate these crossover effects, but such methods do not account for the separate contributions to birth weight of gestational age and fetal "growth."
Methods
Using data for singleton U.S. Blacks (n = 3,683,572) and Whites (n = 18,409,287), we compared neonatal mortality, gestational age, and the difference between the observed birth weight and the optimal birth weight (the weight at which neonatal mortality was lowest) among Black and White infants at the same relative birth weight.
Results
At relative birth weights below zero, gestational ages were, on average, 2.4 ± 1.5 (mean ± standard deviation) weeks shorter for Blacks than for Whites for the same relative birth weight. At relative birth weights above zero, no differences were observed in gestational age, but the optimal birth weight occurred at a much higher relative birth weight in Whites than in Blacks (4150 vs. 3550 g).
Conclusions
Our results suggest that comparisons of neonatal mortality between groups using "relative" birth weight may be potentially biased by differences in gestational age at low birth weights, and by the distance from the optimal birth weight at higher birth weights.
doi:10.1186/1471-2393-4-9
PMCID: PMC441380  PMID: 15180905
Birth weight; gestational age; relative birth weight; optimal birth weight
5.  A parsimonious explanation for intersecting perinatal mortality curves: understanding the effects of race and of maternal smoking 
Background
Neonatal mortality rates among black infants are lower than neonatal mortality rates among white infants at birth weights <3000 g, whereas white infants have a survival advantage at higher birth weights. This finding is also observed when birth weight-specific neonatal mortality rates are compared between infants of smokers and non-smokers. We provide a parsimonious explanation for this paradoxical phenomenon.
Methods
We used data on births in the United States in 1997 after excluding those with a birth weight <500 g or a gestational age <22 weeks. Birth weight- and gestational age-specific perinatal mortality rates were calculated per convention (using total live births at each birth weight/gestational age as the denominator) and also using the fetuses at risk of death at each gestational age.
Results
Perinatal mortality rates (calculated per convention) were lower among blacks than whites at lower birth weights and at preterm gestational ages, while blacks had higher mortality rates at higher birth weights and later gestational ages. With the fetuses-at-risk approach, mortality curves did not intersect; blacks had higher mortality rates at all gestational ages. Increases in birth rates and (especially) growth-restriction rates presaged gestational age-dependent increases in perinatal mortality. Similar findings were obtained in comparisons of smokers versus nonsmokers.
Conclusions
Formulating perinatal risk based on the fetuses-at-risk approach solves the intersecting perinatal mortality curves paradox; blacks have higher perinatal mortality rates than whites and smokers have higher perinatal mortality rates than nonsmokers at all gestational ages and birth weights.
doi:10.1186/1471-2393-4-7
PMCID: PMC419704  PMID: 15090071
6.  A parsimonious explanation for intersecting perinatal mortality curves: understanding the effect of plurality and of parity 
Background
Birth weight- and gestational age-specific perinatal mortality curves intersect when compared across categories of maternal smoking, plurality, race and other factors. No simple explanation exists for this paradoxical observation.
Methods
We used data on all live births, stillbirths and infant deaths in Canada (1991–1997) to compare perinatal mortality rates among singleton and twin births, and among singleton births to nulliparous and parous women. Birth weight- and gestational age-specific perinatal mortality rates were first calculated by dividing the number of perinatal deaths at any given birth weight or gestational age by the number of total births at that birth weight or gestational age (conventional calculation). Gestational age-specific perinatal mortality rates were also calculated using the number of fetuses at risk of perinatal death at any given gestational age.
Results
Conventional perinatal mortality rates among twin births were lower than those among singletons at lower birth weights and earlier gestation ages, while the reverse was true at higher birth weights and later gestational ages. When perinatal mortality rates were based on fetuses at risk, however, twin births had consistently higher mortality rates than singletons at all gestational ages. A similar pattern emerged in contrasts of gestational age-specific perinatal mortality among singleton births to nulliparous and parous women. Increases in gestational age-specific rates of growth-restriction with advancing gestational age presaged rising rates of gestational age-specific perinatal mortality in both contrasts.
Conclusions
The proper conceptualization of perinatal risk eliminates the mortality crossover paradox and provides new insights into perinatal health issues.
doi:10.1186/1471-2393-3-3
PMCID: PMC166132  PMID: 12780942

Results 1-6 (6)