Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)
Year of Publication
Document Types
1.  Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase 
BMC Plant Biology  2006;6:33.
Glycosyl hydrolase family 1 (GH1) β-glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GH1 β-glucosidases are encoded by a multigene family, so we predicted the structures of the genes and the properties of their protein products, and characterized their phylogenetic relationship to other plant GH1 members, their expression and the activity of one of them, to begin to decipher their roles in rice.
Forty GH1 genes could be identified in rice databases, including 2 possible endophyte genes, 2 likely pseudogenes, 2 gene fragments, and 34 apparently competent rice glycosidase genes. Phylogenetic analysis revealed that GH1 members with closely related sequences have similar gene structures and are often clustered together on the same chromosome. Most of the genes appear to have been derived from duplications that occurred after the divergence of rice and Arabidopsis thaliana lineages from their common ancestor, and the two plants share only 8 common gene lineages. At least 31 GH1 genes are expressed in a range of organs and stages of rice, based on the cDNA and EST sequences in public databases. The cDNA of the Os4bglu12 gene, which encodes a protein identical at 40 of 44 amino acid residues with the N-terminal sequence of a cell wall-bound enzyme previously purified from germinating rice, was isolated by RT-PCR from rice seedlings. A thioredoxin-Os4bglu12 fusion protein expressed in Escherichia coli efficiently hydrolyzed β-(1,4)-linked oligosaccharides of 3–6 glucose residues and laminaribiose.
Careful analysis of the database sequences produced more reliable rice GH1 gene structure and protein product predictions. Since most of these genes diverged after the divergence of the ancestors of rice and Arabidopsis thaliana, only a few of their functions could be implied from those of GH1 enzymes from Arabidopsis and other dicots. This implies that analysis of GH1 enzymes in monocots is necessary to understand their function in the major grain crops. To begin this analysis, Os4bglu12 β-glucosidase was characterized and found to have high exoglucanase activity, consistent with a role in cell wall metabolism.
PMCID: PMC1781453  PMID: 17196101
2.  Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light 
BMC Plant Biology  2006;6:32.
Lutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising.
We have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress.
Lutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins.
PMCID: PMC1769499  PMID: 17192177
3.  Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis 
BMC Plant Biology  2006;6:31.
The effective functional analysis of male gametophyte development requires new tools enabling the spatially and temporally controlled expression of both marker genes and modified genes of interest. In particular, promoters driving expression at earlier developmental stages including microspores are required.
Transcriptomic datasets covering four progressive stages of male gametophyte development in Arabidopsis were used to select candidate genes showing early expression profiles that were male gametophyte-specific. Promoter-GUS reporter analysis of candidate genes identified three promoters (MSP1, MSP2, and MSP3) that are active in microspores and are otherwise specific to the male gametophyte and tapetum. The MSP1 and MSP2 promoters were used to successfully complement and restore the male transmission of the gametophytic two-in-one (tio) mutant that is cytokinesis-defective at first microspore division.
We demonstrate the effective application of MSP promoters as tools that can be used to elucidate gametophytic gene functions in microspores in a male-specific manner.
PMCID: PMC1769379  PMID: 17184530
4.  Protease gene families in Populus and Arabidopsis 
BMC Plant Biology  2006;6:30.
Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution.
We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database [1] for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient.
Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.
PMCID: PMC1780054  PMID: 17181860
5.  New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals 
BMC Plant Biology  2006;6:29.
Although the biosynthetic pathways for anthocyanins and their regulation have been well studied, the mechanism of anthocyanin accumulation in the cell is still poorly understood. Different models have been proposed to explain the transport of anthocyanins from biosynthetic sites to the central vacuole, but cellular and subcellular information is still lacking for reconciliation of different lines of evidence in various anthocyanin sequestration studies. Here, we used light and electron microscopy to investigate the structures and the formation of anthocyanic vacuolar inclusions (AVIs) in lisianthus (Eustoma grandiflorum) petals.
AVIs in the epidermal cells of different regions of the petal were investigated. Three different forms of AVIs were observed: vesicle-like, rod-like and irregular shaped. In all cases, EM examinations showed no membrane encompassing the AVI. Instead, the AVI itself consisted of membranous and thread structures throughout. Light and EM microscopy analyses demonstrated that anthocyanins accumulated as vesicle-like bodies in the cytoplasm, which themselves were contained in prevacuolar compartments (PVCs). The vesicle-like bodies seemed to be transported into the central vacuole through the merging of the PVCs and the central vacuole in the epidermal cells. These anthocyanin-containing vesicle-like bodies were subsequently ruptured to form threads in the vacuole. The ultimate irregular AVIs in the cells possessed a very condensed inner and relatively loose outer structure.
Our results strongly suggest the existence of mass transport for anthocyanins from biosynthetic sites in the cytoplasm to the central vacuole. Anthocyanin-containing PVCs are important intracellular vesicles during the anthocyanin sequestration to the central vacuole and these specific PVCs are likely derived directly from endoplasmic reticulum (ER) in a similar manner to the transport vesicles of vacuolar storage proteins. The membrane-like and thread structures of AVIs point to the involvement of intravacuolar membranes and/or anthocyanin intermolecular association in the central vacuole.
PMCID: PMC1781452  PMID: 17173704
6.  Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula 
BMC Plant Biology  2006;6:28.
Exploiting genetic diversity requires previous knowledge of the extent and structure of the variation occurring in a species. Such knowledge can in turn be used to build a core-collection, i.e. a subset of accessions that aim at representing the genetic diversity of this species with a minimum of repetitiveness. We investigate the patterns of genetic diversity and population structure in a collection of 346 inbred lines representing the breadth of naturally occurring diversity in the Legume plant model Medicago truncatula using 13 microsatellite loci distributed throughout the genome.
We confirm the uniqueness of all these genotypes and reveal a large amount of genetic diversity and allelic variation within this autogamous species. Spatial genetic correlation was found only for individuals originating from the same population and between neighbouring populations. Using a model-based clustering algorithm, we identified four main genetic clusters in the set of individuals analyzed. This stratification matches broad geographic regions. We also identified a set of "admixed" individuals that do not fit with this population structure scheme.
The stratification inferred is discussed considering potential historical events like expansion, refuge history and admixture between neighbouring groups. Information on the allelic richness and the inferred population structure are used to build a nested core-collection. The set of inbred lines and the core collections are publicly available and will help coordinating efforts for the study of naturally occurring variation in the growing Medicago truncatula community.
PMCID: PMC1762007  PMID: 17166278
7.  An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development 
BMC Plant Biology  2006;6:27.
Accuracy in quantitative real-time RT-PCR is dependent on high quality RNA, consistent cDNA synthesis, and validated stable reference genes for data normalization. Reference genes used for normalization impact the results generated from expression studies and, hence, should be evaluated prior to use across samples and treatments. Few statistically validated reference genes have been reported in grapevine. Moreover, success in isolating high quality RNA from grapevine tissues is typically limiting due to low pH, and high polyphenolic and polysaccharide contents.
We describe optimization of an RNA isolation procedure that compensates for the low pH found in grape berries and improves the ability of the RNA to precipitate. This procedure was tested on pericarp and seed developmental series, as well as steady-state leaf, root, and flower tissues. Additionally, the expression stability of actin, AP47 (clathrin-associated protein), cyclophilin, EF1-α (elongation factor 1-α), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), MDH (malate dehydrogenase), PP2A (protein phosphatase), SAND, TIP41, α-tubulin, β-tubulin, UBC (ubiquitin conjugating enzyme), UBQ-L40 (ubiquitin L40) and UBQ10 (polyubiquitin) were evaluated on Vitis vinifera cv. Cabernet Sauvignon pericarp using three different statistical approaches. Although several of the genes proved to be relatively stable, no single gene outperformed all other genes in each of the three evaluation methods tested. Furthermore, the effect of using one reference gene versus normalizing to the geometric mean of several genes is presented for the expression of an aquaporin and a sucrose transporter over a developmental series.
In order to quantify relative transcript abundances accurately using real-time RT-PCR, we recommend that combinations of several genes be used for normalization in grape berry development studies. Our data support GAPDH, actin, EF1-α and SAND as the most relevant reference genes for this purpose.
PMCID: PMC1654153  PMID: 17105665
8.  Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection 
BMC Plant Biology  2006;6:26.
Reports of plant molecular responses to pathogenic infections have pinpointed increases in activity of several genes of the phenylpropanoid pathway leading to the synthesis of lignin and flavonoids. The majority of those findings were derived from single gene studies and more recently from several global gene expression analyses. We undertook a global transcriptional analysis focused on the response of genes of the multiple branches of the phenylpropanoid pathway to infection by the Pseudomonas syringae pv. glycinea with or without the avirulence gene avrB to characterize more broadly the contribution of the multiple branches of the pathway to the resistance response in soybean. Transcript abundance in leaves was determined from analysis of soybean cDNA microarray data and hybridizations to RNA blots with specific gene probes.
The majority of the genes surveyed presented patterns of increased transcript accumulation. Some increased rapidly, 2 and 4 hours after inoculation, while others started to accumulate slowly by 8 – 12 hours. In contrast, transcripts of a few genes decreased in abundance 2 hours post inoculation. Most interestingly was the opposite temporal fluctuation in transcript abundance between early responsive genes in defense (CHS and IFS1) and F3H, the gene encoding a pivotal enzyme in the synthesis of anthocyanins, proanthocyanidins and flavonols. F3H transcripts decreased rapidly 2 hours post inoculation and increased during periods when CHS and IFS transcripts decreased. It was also determined that all but one (CHS4) family member genes (CHS1, CHS2, CHS3, CHS5, CHS6 and CHS7/8) accumulated higher transcript levels during the defense response provoked by the avirulent pathogen challenge.
Based on the mRNA profiles, these results show the strong bias that soybean has towards increasing the synthesis of isoflavonoid phytoalexins concomitant with the down regulation of genes required for the synthesis of anthocyanins and proanthocyanins. Although proanthocyanins are known to be toxic compounds, the cells in the soybean leaves seem to be programmed to prioritize the synthesis and accumulation of isoflavonoid and pterocarpan phytoalexins during the resistance response. It was known that CHS transcripts accumulate in great abundance rapidly after inoculation of the soybean plants but our results have demonstrated that all but one (CHS4) member of the gene family member genes accumulated higher transcript levels during the defense response.
PMCID: PMC1636052  PMID: 17083738
9.  Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes 
BMC Plant Biology  2006;6:25.
Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks.
We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like); signalling molecules (e.g. PERK kinases, MLO-like receptors), carbohydrate active enzymes (e.g. XTH18), transcription factors (e.g. members of ZIM, WRKY, NAC), and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1). We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR.
Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent transcriptional responses to stress, will facilitate mapping of regulatory networks and extend our ability to improve salt tolerance in plants.
PMCID: PMC1621065  PMID: 17038189
10.  Storage protein profiles in Spanish and runner market type peanuts and potential markers 
BMC Plant Biology  2006;6:24.
Proteomic analysis has proven to be the most powerful method for describing plant species and lines, and for identification of proteins in complex mixtures. The strength of this method resides in high resolving power of two-dimensional electrophoresis (2-DE), coupled with highly sensitive mass spectrometry (MS), and sequence homology search. By using this method, we might find polymorphic markers to differentiate peanut subspecies.
Total proteins extracted from seeds of 12 different genotypes of cultivated peanut (Arachis hypogaea L.), comprised of runner market (A. hypogaea ssp. hypogaea) and Spanish-bunch market type (A. hypogaea ssp. fastigiata), were separated by electrophoresis on both one- and two-dimensional SDS-PAGE gels. The protein profiles were similar on one-dimensional gels for all tested peanut genotypes. However, peanut genotype A13 lacked one major band with a molecular weight of about 35 kDa. There was one minor band with a molecular weight of 27 kDa that was present in all runner peanut genotypes and the Spanish-derivatives (GT-YY7, GT-YY20, and GT-YY79). The Spanish-derivatives have a runner-type peanut in their pedigrees. The 35 kDa protein in A13 and the 27 kDa protein in runner-type peanut genotypes were confirmed on the 2-D SDS-PAGE gels. Among more than 150 main protein spots on the 2-D gels, four protein spots that were individually marked as spots 1–4 showed polymorphic patterns between runner-type and Spanish-bunch peanuts. Spot 1 (ca. 22.5 kDa, pI 3.9) and spot 2 (ca. 23.5 kDa, pI 5.7) were observed in all Spanish-bunch genotypes, but were not found in runner types. In contrast, spot 3 (ca. 23 kDa, pI 6.6) and spot 4 (ca. 22 kDa, pI 6.8) were present in all runner peanut genotypes but not in Spanish-bunch genotypes. These four protein spots were sequenced. Based on the internal and N-terminal amino acid sequences, these proteins are isoforms (iso-Ara h3) of each other, are iso-allergens and may be modified by post-translational cleavage.
These results suggest that there may be an association between these polymorphic storage protein isoforms and peanut subspecies fastigiata (Spanish type) and hypogaea (runner type). The polymorphic protein peptides distinguished by 2-D PAGE could be used as markers for identification of runner and Spanish peanuts.
PMCID: PMC1621064  PMID: 17038167
11.  PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora 
BMC Plant Biology  2006;6:23.
In the past decade, much work has been done to dissect the molecular basis of the defence signalling pathway in plants known as Systemic Acquired Resistance (SAR). Most of the work has been carried out in model species such as Arabidopsis, with little attention paid to woody plants. However within the range of species examined, components of the pathway seem to be highly conserved. In this study, we attempted to identify downstream components of the SAR pathway in apple to serve as markers for its activation.
We identified three pathogenesis related (PR) genes from apple, PR-2, PR-5 and PR-8, which are induced in response to inoculation with the apple pathogen, Erwinia amylovora, but they are not induced in young apple shoots by treatment with known elicitors of SAR in herbaceous plants. We also identified three PR-1-like genes from apple, PR-1a, PR-1b and PR-1c, based solely on sequence similarity to known PR-1 genes of model (intensively researched) herbaceous plants. The PR-1-like genes were not induced in response to inoculation with E. amylovora or by treatment with elicitors; however, each showed a distinct pattern of expression.
Four PR genes from apple were partially characterized. PR-1a, PR-2, PR-5 and PR-8 from apple are not markers for SAR in young apple shoots. Two additional PR-1-like genes were identified through in-silico analysis of apple ESTs deposited in GenBank. PR-1a, PR-1b and PR-1c are not involved in defence response or SAR in young apple shoots; this conclusion differs from that reported previously for young apple seedlings.
PMCID: PMC1613244  PMID: 17029637
12.  The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte 
BMC Plant Biology  2006;6:22.
The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied.
Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-β-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness.
ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types.
PMCID: PMC1609167  PMID: 17022830
13.  The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms 
BMC Plant Biology  2006;6:21.
The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms.
The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs). Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP) and maximum likelihood (ML) methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and Nymphaeales, relationship of the magnoliid genus Calycanthus, and the monophyly of the eurosid I clade. Both MP and ML trees provide strong support for the monophyly of eurosids II and for the placement of Citrus (Sapindales) sister to a clade including the Malvales/Brassicales.
This is the first complete chloroplast genome sequence for a member of the Rutaceae and Sapindales. Expansion of the inverted repeat region to include rps19 and part of rpl22 and presence of two truncated copies of rpl22 is unusual among sequenced chloroplast genomes. Availability of a complete Citrus chloroplast genome sequence provides valuable information on intergenic spacer regions and endogenous regulatory sequences for chloroplast genetic engineering. Phylogenetic analyses resolve relationships among several major clades of angiosperms and provide strong support for the monophyly of the eurosid II clade and the position of the Sapindales sister to the Brassicales/Malvales.
PMCID: PMC1599732  PMID: 17010212
14.  A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus 
BMC Plant Biology  2006;6:20.
Eucalypts are the most widely planted hardwood trees in the world occupying globally more than 18 million hectares as an important source of carbon neutral renewable energy and raw material for pulp, paper and solid wood. Quantitative Trait Loci (QTLs) in Eucalyptus have been localized on pedigree-specific RAPD or AFLP maps seriously limiting the value of such QTL mapping efforts for molecular breeding. The availability of a genus-wide genetic map with transferable microsatellite markers has become a must for the effective advancement of genomic undertakings. This report describes the development of a novel set of 230 EMBRA microsatellites, the construction of the first comprehensive microsatellite-based consensus linkage map for Eucalyptus and the consolidation of existing linkage information for other microsatellites and candidate genes mapped in other species of the genus.
The consensus map covers ~90% of the recombining genome of Eucalyptus, involves 234 mapped EMBRA loci on 11 linkage groups, an observed length of 1,568 cM and a mean distance between markers of 8.4 cM. A compilation of all microsatellite linkage information published in Eucalyptus allowed us to establish the homology among linkage groups between this consensus map and other maps published for E. globulus. Comparative mapping analyses also resulted in the linkage group assignment of other 41 microsatellites derived from other Eucalyptus species as well as candidate genes and QTLs for wood and flowering traits published in the literature. This report significantly increases the availability of microsatellite markers and mapping information for species of Eucalyptus and corroborates the high conservation of microsatellite flanking sequences and locus ordering between species of the genus.
This work represents an important step forward for Eucalyptus comparative genomics, opening stimulating perspectives for evolutionary studies and molecular breeding applications. The generalized use of an increasingly larger set of interspecific transferable markers and consensus mapping information, will allow faster and more detailed investigations of QTL synteny among species, validation of expression-QTL across variable genetic backgrounds and positioning of a growing number of candidate genes co-localized with QTLs, to be tested in association mapping experiments.
PMCID: PMC1599733  PMID: 16995939
15.  Kinesin-5 motors are required for organization of spindle microtubules in Silvetia compressa zygotes 
BMC Plant Biology  2006;6:19.
Monastrol, a chemical inhibitor specific to the Kinesin-5 family of motor proteins, was used to examine the functional roles of Kinesin-5 proteins during the first, asymmetric cell division cycle in the brown alga Silvetia compressa.
Monastrol treatment had no effect on developing zygotes prior to entry into mitosis. After mitosis entry, monastrol treatment led to formation of monasters and cell cycle arrest in a dose dependent fashion. These findings indicate that Kinesin-5 motors maintain spindle bipolarity, and are consistent with reports in animal cells. At low drug concentrations that permitted cell division, spindle position was highly displaced from normal, resulting in abnormal division planes. Strikingly, application of monastrol also led to formation of numerous cytasters throughout the cytoplasm and multipolar spindles, uncovering a novel effect of monastrol treatment not observed in animal cells.
We postulate that monastrol treatment causes spindle poles to break apart forming cytasters, some of which capture chromosomes and become supernumerary spindle poles. Thus, in addition to maintaining spindle bipolarity, Kinesin-5 members in S. compressa likely organize microtubules at spindle poles. To our knowledge, this is the first functional characterization of the Kinesin-5 family in stramenopiles.
PMCID: PMC1564386  PMID: 16945151
16.  An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice 
BMC Plant Biology  2006;6:18.
The bZIP class Abscisic acid Responsive Element (ABRE)-binding factor, OSBZ8 (38.5 kD) has been considered to regulate ABA-mediated transcription in the suspension cultured cells of japonica rice. Still, nothing is known about the expression of OSBZ8 at protein level in vegetative tissue of salt sensitive and salt tolerant rice plants. In our previous study, Electrophoretic Mobility Shift Assay (EMSA) of [32P]ABRE-DNA and nuclear extracts prepared from the lamina of Pokkali rice plants has detected the presence of an ABRE-binding factor. Northern analysis has also detected salinity stress induced accumulation of transcripts for bZIP class of factor. Therefore, OSBZ8 was considered to play an important role in the regulation of transcription in the vegetative tissue of rice. The aim of this study is to find out whether OSBZ8 has any role in regulating the NaCl-stress induced gene expression in vegetative tissue and whether the expression of OSBZ8 factor directly correlates with the stress tolerance of different varieties of indica type rice.
Northern analysis of total RNA from roots and lamina of salt-sensitive M-I-48 and salt-tolerant Nonabokra, when probed with the N-terminal unique region of OSBZ8 (OSBZ8p, without the highly conserved basic region), a transcript of 1.3 kb hybridized and its level was much higher in tolerant cultivar. EMSA with Em1a, the strongest ABA Responsive Element till reported from the upstream of EmBP1, and the nuclear extracts from laminar tissue of untreated and salt-treated seedlings of three salt sensitive, one moderately sensitive and two salt tolerant indica rice cultivars showed specific binding of nuclear factor to ABRE element. Intensity of binding was low and inducible in salt sensitive rice cultivars while high and constitutive in salt tolerant cultivars. EMSA with 300 bp 5'upstream region of Rab16A gene, a well known salt stress and ABA-inducible gene of rice, showed formation of two complexes, again very weak in salt sensitive and strong in salt tolerant rice cultivar.
The bZIP factor OSBZ8 was found to be present in the ABRE-DNA: protein complex as shown by the supershift of the complex by the purified antiserum raised against OSBZ8p. Treatment of the seedlings with NaCl was found to enhance the complex formation, suggesting the regulation of OSBZ8 gene at both transcriptional and post-translational steps. Comparative EMSA with different varieties of rice suggests a positive correlation with the expression pattern of OSBZ8 and salt tolerance in rice cultivars.
PMCID: PMC1574319  PMID: 16939657
17.  Rapid and accurate pyrosequencing of angiosperm plastid genomes 
BMC Plant Biology  2006;6:17.
Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae).
More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions.
Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically.
PMCID: PMC1564139  PMID: 16934154
18.  An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): characterization and microsatellite markers 
BMC Plant Biology  2006;6:16.
The endemic Hawaiian mints represent a major island radiation that likely originated from hybridization between two North American polyploid lineages. In contrast with the extensive morphological and ecological diversity among taxa, ribosomal DNA sequence variation has been found to be remarkably low. In the past few years, expressed sequence tag (EST) projects on plant species have generated a vast amount of publicly available sequence data that can be mined for simple sequence repeats (SSRs). However, these EST projects have largely focused on crop or otherwise economically important plants, and so far only few studies have been published on the use of intragenic SSRs in natural plant populations. We constructed an EST library from developing fleshy nutlets of Stenogyne rugosa principally to identify genetic markers for the Hawaiian endemic mints.
The Stenogyne fruit EST library consisted of 628 unique transcripts derived from 942 high quality ESTs, with 68% of unigenes matching Arabidopsis genes. Relative frequencies of Gene Ontology functional categories were broadly representative of the Arabidopsis proteome. Many unigenes were identified as putative homologs of genes that are active during plant reproductive development. A comparison between unigenes from Stenogyne and tomato (both asterid angiosperms) revealed many homologs that may be relevant for fruit development. Among the 628 unigenes, a total of 44 potentially useful microsatellite loci were predicted. Several of these were successfully tested for cross-transferability to other Hawaiian mint species, and at least five of these demonstrated interesting patterns of polymorphism across a large sample of Hawaiian mints as well as close North American relatives in the genus Stachys.
Analysis of this relatively small EST library illustrated a broad GO functional representation. Many unigenes could be annotated to involvement in reproductive development. Furthermore, first tests of microsatellite primer pairs have proven promising for the use of Stenogyne rugosa EST SSRs for evolutionary and phylogeographic studies of the Hawaiian endemic mints and their close relatives. Given that allelic repeat length variation in developmental genes of other organisms has been linked with morphological evolution, these SSRs may also prove useful for analyses of phenotypic differences among Hawaiian mints.
PMCID: PMC1560379  PMID: 16928278
19.  Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability 
BMC Plant Biology  2006;6:15.
To coordinate metabolite fluxes and energy availability, plants adjust metabolism and gene expression to environmental changes through employment of interacting signalling pathways.
Comparing the response of Arabidopsis wild-type plants with that of the mutants adg1, pgr1 and vtc1 upon altered CO2-availability, the regulatory role of the cellular energy status, photosynthetic electron transport, the redox state and concentration of ascorbate and glutathione and the assimilatory force was analyzed in relation to the transcript abundance of stress-responsive nuclear encoded genes and psaA and psbA encoding the reaction centre proteins of photosystem I and II, respectively. Transcript abundance of Bap1, Stp1, psaA and psaB was coupled with seven metabolic parameters. Especially for psaA and psaB, the complex analysis demonstrated that the assumed PQ-dependent redox control is subordinate to signals linked to the relative availability of 3-PGA and DHAP, which define the assimilatory force. For the transcripts of sAPx and Csd2 high correlations with the calculated redox state of NADPH were observed in pgr1, but not in wild-type, suggesting that in wild-type plants signals depending on thylakoid acidification overlay a predominant redox-signal. Strongest correlation with the redox state of ascorbate was observed for 2CPA, whose transcript abundance regulation however was almost insensitive to the ascorbate content demonstrating dominance of redox regulation over metabolite sensing.
In the mutants, signalling pathways are partially uncoupled, demonstrating dominance of metabolic control of photoreaction centre expression over sensing the redox state of the PQ-pool. The balance between the cellular redox poise and the energy signature regulates sAPx and Csd2 transcript abundance, while 2CPA expression is primarily redox-controlled.
PMCID: PMC1579212  PMID: 16916444
20.  Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway 
BMC Plant Biology  2006;6:14.
Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis.
The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives.
This systems biology program combined chemical analysis, genomics and bioinformatics to elucidate the scent biosynthesis pathway and identify the relevant genes. It integrates the forward and reverse genetic approaches to knowledge discovery by which researchers can study non-model plants.
PMCID: PMC1540424  PMID: 16836766
21.  Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase 
BMC Plant Biology  2006;6:13.
Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity.
We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e), by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold). Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed.
The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.
PMCID: PMC1570464  PMID: 16800876
22.  A systematic search for positive selection in higher plants (Embryophytes) 
BMC Plant Biology  2006;6:12.
Previously, a database characterizing examples of Embryophyte gene family lineages showing evidence of positive selection was reported. Of the gene family trees, 138 Embryophyte branches showed Ka/Ks>>1 and are candidates for functional adaptation. The database and these examples have now been studied in further detail to better understand the molecular basis for plant genome evolution.
Neutral modeling showed an excess of positive and/or negative selection in the database over a neutral expectation centered on the mean Ka/Ks ratio. Out of 673 families with assigned structures, 490 have at least one branch with Ka/Ks >>1 in a region of the protein, enabling a picture of selective pressures delineated by protein structure. Most gene families allowed reconstruction back to the last common ancestor of flowering plants (Magnoliophytes) without saturation of 4- fold degenerate codon position. Positive selection occurred in a wide variety of gene families with different functions, including in the self incompatibility locus, in defense against pathogens, in embryogenesis, in cold acclimation, and in electrontransport. Structurally, selective pressures were similar between alpha-helices and beta- sheets, but were less negative and more variant on the surface and away from the hydrophobic core.
Positive selection was detected statistically significantly in a small and nonrandom minority of gene families in a systematic analysis of embryophyte gene families. More sensitive methods increased the level of positive selection that was detected and presented a structural basis for the role of positive selection in plant genomes.
PMCID: PMC1540423  PMID: 16784532
23.  Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae) 
BMC Plant Biology  2006;6:11.
The inflorescence of the cut-flower crop Gerbera hybrida (Asteraceae) consists of two principal flower types, ray and disc, which form a tightly packed head, or capitulum. Despite great interest in plant morphological evolution and the tractability of the gerbera system, very little is known regarding genetic mechanisms involved in flower type specification. Here, we provide comparative staging of ray and disc flower development and microarray screening for differentially expressed genes, accomplished via microdissection of hundreds of coordinately developing flower primordia.
Using a 9K gerbera cDNA microarray we identified a number of genes with putative specificity to individual flower types. Intrestingly, several of these encode homologs of MADS-box transcription factors otherwise known to regulate flower organ development. From these and previously obtained data, we hypothesize the functions and protein-protein interactions of several gerbera MADS-box factors.
Our RNA expression results suggest that flower-type specific MADS protein complexes may play a central role in differential development of ray and disc flowers across the gerbera capitulum, and that some commonality is shared with known protein functions in floral organ determination. These findings support the intriguing conjecture that the gerbera flowering head is more than a mere floral analog at the level of gene regulation.
PMCID: PMC1525168  PMID: 16762082
24.  FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways 
BMC Plant Biology  2006;6:10.
The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system.
Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity.
This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species.
PMCID: PMC1525167  PMID: 16737527
25.  Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites 
BMC Plant Biology  2006;6:9.
The moss Physcomitrella patens is an emerging model in comparative plant science. At present, the Physcomitrella genome is sequenced at the Joint Genome Institute (USA). In this study we present our results on the development of expressed sequence tag-derived microsatellite markers for Physcomitrella patens, their classification and applicability as genetic markers on the intra- as well as on the interspecies level. We experienced severe restrictions to compare our results on Physcomitrella with earlier studies for other plant species due to varying microsatellite search criteria and a limited selection of analysed species. As a consequence, we performed a side by side analysis of expressed sequence tag-derived microsatellites among 24 plant species covering a broad phylogenetic range and present our results on the observed frequencies.
We identified 3,723 microsatellites using the software MISA in a non-redundant Physcomitrella expressed sequence tag database comprising more than 37 megabases of nucleotide information. For 2,951 microsatellites appendant primer sequences have been derived. PCR of 376 microsatellites yielded 88 % successful amplicons and over 30 % polymorphisms between two Physcomitrella accessions. The polymorphism information content of 64 microsatellites based on 21 different Physcomitrella accessions was comparably high with a mean of 0.47 +/- 0.17. Of the 64 Physcomitrella microsatellite markers, 34 % respectively 79.7 % revealed cross-species applicability in two closely related moss species.
In our survey of two green algae, two mosses, a fern, a fern palm, the ginkgo tree, two conifers, ten dicots and five monocots we detected an up to sevenfold variation in the overall frequency with a minimum of 37 up to maximal 258 microsatellites per megabase and a high variability among the different microsatellite class and motif frequencies. Numerous species-specific microsatellite frequencies became evident and several deviations to earlier reports were ascertained.
With the Physcomitrella microsatellite marker set a valuable tool has been made available for further genetic and genomic applications on the intra- as well as on the interspecies level. The comparative survey of expressed sequence tag-derived microsatellites among the plant kingdom is well suited for a classification of future studies on plant microsatellites.
PMCID: PMC1526434  PMID: 16734891

Results 1-25 (33)