Search tips
Search criteria

Results 1-25 (134)

Clipboard (0)
Year of Publication
1.  Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding 
BMC Plant Biology  2008;8:134.
Phosphorylation of eIF2α provides a key mechanism for down-regulating protein synthesis in response to nutrient starvation or stresses in mammalian and yeast cells. However, this process has not been well characterized in plants
We show here that in response to amino acid and purine starvations, UV, cold shock and wounding, the Arabidopsis GCN2 kinase (AtGCN2) is activated and phosphorylates eIF2α. We show that AtGCN2 is essential for plant growth in stress situations and that its activity results in a strong reduction in global protein synthesis.
Our results suggest that a general amino acid control response is conserved between yeast and plants but that the plant enzyme evolved to fulfill a more general function as an upstream sensor and regulator of diverse stress-response pathways. The activation of AtGCN2 following wounding or exposure to methyl jasmonate, the ethylene precursor 1-Aminocyclopropane-1-carboxylic acid (ACC) and salicylic acid, further suggests that this enzyme could play a role in plant defense against insect herbivores.
PMCID: PMC2639386  PMID: 19108716
2.  The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula 
BMC Plant Biology  2008;8:133.
Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago.
Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor.
This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively.
PMCID: PMC2644698  PMID: 19105811
3.  Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula 
BMC Plant Biology  2008;8:132.
Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs) are essential components.
In this study, we analyzed TFs responding to yeast elicitor (YE) or methyl jasmonate (MJ). From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH) family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ) transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2) and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants.
These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.
PMCID: PMC2628384  PMID: 19102779
4.  Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process 
BMC Plant Biology  2008;8:131.
The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR.
In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process.
This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene expression during tomato development process. From our study a tool-kit of control genes emerges that outperform the traditional genes in terms of expression stability.
PMCID: PMC2629474  PMID: 19102748
5.  A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae) 
BMC Plant Biology  2008;8:130.
The natural phenotypic variability present in the germplasm of cultivated plants can be linked to molecular polymorphisms using association genetics. However it is necessary to consider the genetic structure of the germplasm used to avoid false association. The knowledge of genetic structure of plant populations can help in inferring plant evolutionary history. In this context, we genotyped 360 wild, feral and cultivated accessions with 20 simple sequence repeat markers and investigated the extent and structure of the genetic variation. The study focused on the red fruited tomato clade involved in the domestication of tomato and confirmed the admixture status of cherry tomatoes (Solanum lycopersicum var. cerasiforme). We used a nested sample strategy to set-up core collection maximizing the genetic diversity with a minimum of individuals.
Molecular diversity was considerably lower in S. lycopersicum i.e. the domesticated form. Model-based analysis showed that the 144 S. lycopersicum var. cerasiforme accessions were structured into two groups: one close to the domesticated group and one resulting from the admixture of the S. lycopersicum and S. pimpinellifolium genomes. SSR genotyping also indicates that domesticated and wild tomatoes have evolved as a species complex with intensive level of hybridization. We compiled genotypic and phenotypic data to identify sub-samples of 8, 24, 32 and 64 cherry tomato accessions that captured most of the genetic and morphological diversity present in the entire S. lycopersicum var. cerasiforme collection.
The extent and structure of allelic variation is discussed in relation to historical events like domestication and modern selection. The potential use of the admixed group of S. lycopersicum var. cerasiforme for association genetics studies is also discussed. Nested core collections sampled to represent tomato diversity will be useful in diversity studies. Molecular and phenotypic variability of these core collections is defined. These collections are available for the scientific community and can be used as standardized panels for coordinating efforts on identifying novel interesting genes and on examining the domestication process in more detail.
PMCID: PMC2657798  PMID: 19099601
6.  Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms 
BMC Plant Biology  2008;8:129.
Verticillium longisporum is one of the most important pathogens of Brassicaceae that remains strictly in the xylem during most stages of its development. It has been suggested that disease symptoms are associated with clogging of xylem vessels. The aim of our study was to investigate extracellular defence reactions induced by V. longisporum in the xylem sap and leaf apoplast of Brassica napus var. napus in relation to the development of disease symptoms, photosynthesis and nutrient status.
V. longisporum (strain VL43) did not overcome the hypocotyl barrier until 3 weeks after infection although the plants showed massive stunting of the stem and mild leaf chlorosis. During this initial infection phase photosynthetic carbon assimilation, transpiration rate and nutrient elements in leaves were not affected in VL43-infected compared to non-infected plants. Proteome analysis of the leaf apoplast revealed 170 spots after 2-D-protein separation, of which 12 were significantly enhanced in response to VL43-infection. LS-MS/MS analysis and data base searches revealed matches of VL43-responsive proteins to an endochitinase, a peroxidase, a PR-4 protein and a β-1,3-glucanase. In xylem sap three up-regulated proteins were found of which two were identified as PR-4 and β-1,3-glucanase. Xylem sap of infected plants inhibited the growth of V. longisporum.
V. longisporum infection did not result in drought stress or nutrient limitations. Stunting and mild chlorosis were, therefore, not consequences of insufficient water and nutrient supply due to VL43-caused xylem obstruction. A distinct array of extracellular PR-proteins was activated that might have limited Verticillium spreading above the hypocotyl. In silico analysis suggested that ethylene was involved in up-regulating VL43-responsive proteins.
PMCID: PMC2644697  PMID: 19094241
7.  A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping 
BMC Plant Biology  2008;8:127.
Individual fingerprinting based on molecular markers has become a popular tool for studies of population genetics and analysis of genetic diversity in germplasm collections, including the solution of synonymy/homonymy and analysis of paternity and kinship.
Genetic profiling of individuals is nowadays based on SSR (Simple Sequence Repeat) markers, which have a number of positive features that make them superior to any other molecular marker developed so far. In humans, SSRs with core repeats three to five nucleotides long are preferred because neighbour alleles are more easily separated and distinguished from each other; while in plants, SSRs with shorter repeats, namely two-nucleotides long, are still in use although they suffer lower separation of neighbour alleles and uncomfortable stuttering.
New microsatellite markers, containing tri-, tetra-, and penta-nucleotide repeats, were selected from a total of 26,962 perfect microsatellites in the genome sequence of nearly homozogous grapevine PN40024, assembled from reads covering 8.4 X genome equivalents.
Long nucleotide repeats were selected for fingerprinting, as previously done in many species including humans. The new grape SSR markers were tested for their reproducibility and information content in a panel of 48 grape cultivars. Allelic segregation was tested in progenies derived from two controlled crosses.
A list of 38 markers with excellent quality of peaks, high power of discrimination, and uniform genome distribution (1–3 markers/chromosome), is proposed for grape genotyping. The reasons for exclusion are given for those that were discarded. The construction of marker-specific allelic ladders is also described, and their use is recommended to harmonise allelic calls and make the data obtained with different equipment and by different laboratories fully comparable.
PMCID: PMC2625351  PMID: 19087321
8.  A SNP transferability survey within the genus Vitis 
BMC Plant Biology  2008;8:128.
Efforts to sequence the genomes of different organisms continue to increase. The DNA sequence is usually decoded for one individual and its application is for the whole species. The recent sequencing of the highly heterozygous Vitis vinifera L. cultivar Pinot Noir (clone ENTAV 115) genome gave rise to several thousand polymorphisms and offers a good model to study the transferability of its degree of polymorphism to other individuals of the same species and within the genus.
This study was performed by genotyping 137 SNPs through the SNPlex™ Genotyping System (Applied Biosystems Inc.) and by comparing the SNPlex sequencing results across 35 (of the 137) regions from 69 grape accessions. A heterozygous state transferability of 31.5% across the unrelated cultivars of V. vinifera, of 18.8% across the wild forms of V. vinifera, of 2.3% among non-vinifera Vitis species, and of 0% with Muscadinia rotundifolia was found. In addition, mean allele frequencies were used to evaluate SNP informativeness and develop useful subsets of markers.
Using SNPlex application and corroboration from the sequencing analysis, the informativeness of SNP markers from the heterozygous grape cultivar Pinot Noir was validated in V. vinifera (including cultivars and wild forms), but had a limited application for non-vinifera Vitis species where a resequencing strategy may be preferred, knowing that homology at priming sites is sufficient. This work will allow future applications such as mapping and diversity studies, accession identification and genomic-research assisted breeding within V. vinifera.
PMCID: PMC2631481  PMID: 19087337
9.  The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis (L.) Osbeck) 
BMC Plant Biology  2008;8:126.
Mineral nutrients are one of the most basic components of plant tissue culture media. Nitrogen in the form of NH4+ and NO3- is the dominant mineral nutrient in most plant tissue culture formulations, with effects dependent on both the proportion and the amount of NH4+ and NO3-. The effects of nitrogen nutrition on the growth of nonembryogenic and embryogenic cell lines of sweet orange (C. sinensis (L.) Osbeck cv. 'Valencia'), tissues routinely used in citrus horticultural and plant improvement research, was explored using an experimental approach free of ion confounding that included a 2-component mixture (NH4+:K+) and a quantitative factor [NO3-] crossed by the mixture, thereby providing ion-specific estimates of proportional and amount effects.
First, the linear mixture component, though only a comparison of the design space vertices, was highly significant for both tissue types and showed that NH4+ was required by both tissues. Second, the NH4+ * K+ mixture term was highly significant for both tissue types, revealing that NH4+ and K+ exhibit strong synergistic blending and showed that growth was substantially greater at certain blends of these two ions. Third, though the interaction between the NH4+:K+ mixture and NO3- amount on fresh weight accumulation for both tissue types was significant, it was substantially less than the main effect of the NH4+:K+ mixture. Fourth, a region of the design space was identified where fresh weight growth was increased 198% and 67% over the MS medium controls for nonembryogenic and embryogenic tissues.
By designing a mineral nutrient experiment free of ion confounding, a direct estimation of ion-specific proportional and amount effects on plant tissue growth is possible. When the ions themselves are the independent factors and/or mixture components, the resulting design space can be systematically explored to identify regions where the response(s) is substantially improved over current media formulations. In addition, because the response is over a defined experimental region, a specific medium formulation is more accurately interpreted as a coordinate in the specified design geometry.
PMCID: PMC2639385  PMID: 19087252
10.  ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance 
BMC Plant Biology  2008;8:125.
Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance.
All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress.
Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress.
Overall our findings suggest that the ESKIMO1 gene plays a major role in plant response to water shortage and in whole plant water economy. Further experiments are being undertaken to elucidate the function of the ESKIMO1 protein and the way it modulates plant water uptake.
PMCID: PMC2630945  PMID: 19061521
11.  A putative autonomous 20.5 kb-CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max 
BMC Plant Biology  2008;8:124.
The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1) from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008.
We identified a 20.5 kb insertion in a soybean flavonoid 3'-hydroxylase (F3'H) gene representing the t* allele (stable gray trichome color) whose origin traces to a single mutable chimeric plant displaying both tawny and gray trichomes. This 20.5 kb insertion has the molecular structure of a putative autonomous transposon of the CACTA family, designated Tgmt*. It encodes a large gene that was expressed in two sister isolines (T* and tm) of the stable gray line (t*) from which Tgmt* was isolated. RT-PCR derived cDNAs uncovered the structure of a large precursor mRNA as well as alternatively spliced transcripts reminiscent of the TNPA-mRNA generated by the En-1 element of maize but without sequence similarity to the maize TNPA. The larger mRNA encodes a transposase with a tnp2 and TNP1-transposase family domains. Because the two soybean lines expressing Tgmt* were derived from the same mutable chimeric plant that created the stable gray trichome t* allele line from which the element was isolated, Tgmt* has the potential to be an autonomous element that was rapidly inactivated in the stable gray trichome t* line. Comparison of Tgmt* to previously described Tgm elements demonstrated that two subtypes of CACTA transposon families exist in soybean based on divergence of their characteristic subterminal repeated motifs and their transposases. In addition, we report the sequence and annotation of a BAC clone containing the F3'H gene (T locus) which was interrupted by the novel Tgmt* element in the gray trichome allele t*.
The molecular characterization of a 20.5 kb insertion in the flavonoid 3'-hydroxylase (F3'H) gene of a soybean gray pubescence allele (t*) identified the structure of a CACTA transposon designated Tgmt*. Besides the terminal inverted repeats and subterminal repeated motifs,Tgmt* encoded a large gene with two putative functions that are required for excision and transposition of a CACTA element, a transposase and the DNA binding protein known to associate to the subterminal repeated motifs. The degree of dissimilarity between Tgmt* transposase and subterminal repeated motifs with those of previously characterized defective CACTA elements (Tgm1-7) were evidence of the existence of two subfamilies of CACTA transposons in soybean, an observation not previously reported in other plants. In addition, our analyses of a genetically active and potentially autonomous element sheds light on the complete structure of a soybean element that is useful for annotation of the repetitive fraction of the soybean genome sequence and may prove useful for transposon tagging or transposon display experiments in different genetic lines.
PMCID: PMC2613891  PMID: 19055742
12.  Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice 
BMC Plant Biology  2008;8:123.
The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein.
In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets.
We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively.
In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site.
The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.
PMCID: PMC2607281  PMID: 19055717
13.  Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds 
BMC Plant Biology  2008;8:122.
With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential.
To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway.
This study provides an important step toward the understanding of main events and metabolic pathways during germination in sugar beet. The reported alterations of gene expression in response to stress shed light on sugar beet stress adaptation mechanisms. Some of the identified stress-responsive genes provide a new potential source for improvement of sugar beet stress tolerance during germination and field emergence.
PMCID: PMC2632670  PMID: 19046420
14.  The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis 
BMC Plant Biology  2008;8:121.
Histone acetyltransferases (HATs) play critical roles in the regulation of chromatin structure and gene expression. Arabidopsis genome contains 12 HAT genes, but the biological functions of many of them are still unknown. In this work, we studied the evolutionary relationship and cellular functions of the two Arabidopsis HAT genes homologous to the MYST family members.
An extensive phylogenetic analysis of 105 MYST proteins revealed that they can be divided into 5 classes, each of which contains a specific combination of protein modules. The two Arabidopsis MYST proteins, HAM1 and HAM2, belong to a "green clade", clearly separated from other families of HATs. Using a reverse genetic approach, we show that HAM1 and HAM2 are a functionally redundant pair of genes, as single Arabidopsis ham1 and ham2 mutants displayed a wild-type phenotype, while no double mutant seedling could be recovered. Genetic analysis and cytological study revealed that ham1ham2 double mutation induced severe defects in the formation of male and female gametophyte, resulting in an arrest of mitotic cell cycle at early stages of gametogenesis. RT-PCR experiments and the analysis of transgenic plants expressing the GUS reporter gene under the HAM1 or the HAM2 promoter showed that both genes displayed an overlapping expression pattern, mainly in growing organs such as shoots and flower buds.
The work presented here reveals novel properties for MYST HATs in Arabidopsis. In addition to providing an evolutionary relationship of this large protein family, we show the evidence of a link between MYST and gamete formation as previously suggested in mammalian cells. A possible function of the Arabidopsis MYST protein-mediated histone acetylation during cell division is suggested.
PMCID: PMC2606689  PMID: 19040736
15.  Development and mapping of Simple Sequence Repeat markers for pearl millet from data mining of Expressed Sequence Tags 
BMC Plant Biology  2008;8:119.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple food and fodder crop of marginal agricultural lands of sub-Saharan Africa and the Indian subcontinent. It is also a summer forage crop in the southern USA, Australia and Latin America, and is the preferred mulch in Brazilian no-till soybean production systems. Use of molecular marker technology for pearl millet genetic improvement has been limited. Progress is hampered by insufficient numbers of PCR-compatible co-dominant markers that can be used readily in applied breeding programmes. Therefore, we sought to develop additional SSR markers for the pearl millet research community.
A set of new pearl millet SSR markers were developed using available sequence information from 3520 expressed sequence tags (ESTs). After clustering, unigene sequences (2175 singlets and 317 contigs) were searched for the presence of SSRs. We detected 164 sequences containing SSRs (at least 14 bases in length), with a density of one per 1.75 kb of EST sequence. Di-nucleotide repeats were the most abundant followed by tri-nucleotide repeats. Ninety primer pairs were designed and tested for their ability to detect polymorphism across a panel of 11 pairs of pearl millet mapping population parental lines. Clear amplification products were obtained for 58 primer pairs. Of these, 15 were monomorphic across the panel. A subset of 21 polymorphic EST-SSRs and 6 recently developed genomic SSR markers were mapped using existing mapping populations. Linkage map positions of these EST-SSR were compared by homology search with mapped rice genomic sequences on the basis of pearl millet-rice synteny. Most new EST-SSR markers mapped to distal regions of linkage groups, often to previous gaps in these linkage maps. These new EST-SSRs are now are used by ICRISAT in pearl millet diversity assessment and marker-aided breeding programs.
This study has demonstrated the potential of EST-derived SSR primer pairs in pearl millet. As reported for other crops, EST-derived SSRs provide a cost-saving marker development option in pearl millet. Resources developed in this study have added a sizeable number of useful SSRs to the existing repertoire of circa 100 genomic SSRs that were previously available to pearl millet researchers.
PMCID: PMC2632669  PMID: 19038016
16.  Arabidopsis At5g39790 encodes a chloroplast-localized, carbohydrate-binding, coiled-coil domain-containing putative scaffold protein 
BMC Plant Biology  2008;8:120.
Starch accumulation and degradation in chloroplasts is accomplished by a suite of over 30 enzymes. Recent work has emphasized the importance of multi-protein complexes amongst the metabolic enzymes, and the action of associated non-enzymatic regulatory proteins. Arabidopsis At5g39790 encodes a protein of unknown function whose sequence was previously demonstrated to contain a putative carbohydrate-binding domain.
We here show that At5g39790 is chloroplast-localized, and binds starch, with a preference for amylose. The protein persists in starch binding under conditions of pH, redox and Mg+2 concentrations characteristic of both the day and night chloroplast cycles. Bioinformatic analysis demonstrates a diurnal pattern of gene expression, with an accumulation of transcript during the light cycle and decline during the dark cycle. A corresponding diurnal pattern of change in protein levels in leaves is also observed. Sequence analysis shows that At5g39790 has a strongly-predicted coiled-coil domain. Similar analysis of the set of starch metabolic enzymes shows that several have strong to moderate coiled-coil potential. Gene expression analysis shows strongly correlated patterns of co-expression between At5g39790 and several starch metabolic enzymes.
We propose that At5g39790 is a regulatory scaffold protein, persistently binding the starch granule, where it is positioned to interact by its coiled-coil domain with several potential starch metabolic enzyme binding-partners.
PMCID: PMC2653042  PMID: 19038037
17.  RICD: A rice indica cDNA database resource for rice functional genomics 
BMC Plant Biology  2008;8:118.
The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones.
Rice Indica cDNA Database (RICD) is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB) and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA.
The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website .
PMCID: PMC2605458  PMID: 19036133
18.  Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction 
BMC Plant Biology  2008;8:117.
Tuberization in potato (Solanum tuberosum L.) represents a morphogenetic transition of stolon growth to tuber formation, which is under complex environmental and endogenous regulation. In the present work, we studied the regulatory mechanisms and the role of different morphogenetic factors in a newly isolated potato mutant, which exhibited spontaneous tuberization (ST). The ST mutant was characterized in detail at morphological, physiological and biochemical levels.
Tuberization of the ST mutant grown in the soil was photoperiod-insensitive; predominantly sessile tubers formed directly from axillary buds even under continuous light. Single-node cuttings of the ST mutant cultured in vitro frequently formed tubers or basal tuber-like swellings instead of normal shoots under conditions routinely used for shoot propagation. The tuberization response of ST cuttings under light was dependent on sucrose, the concentration of which had to exceed certain threshold that inversely correlated with irradiance. Gibberellic acid prevented tuberization of ST cuttings, but failed to restore normal shoot phenotype and caused severe malformations. Carbohydrate analysis showed increased levels of both soluble sugars and starch in ST plants, with altered carbohydrate partitioning and metabolism. Comparative proteomic analysis revealed only a few differences between ST- and wild-type plants, primary amongst which seemed to be the absence of an isoform of manganese-stabilizing protein, a key subunit of photosystem II.
ST mutant exhibits complex developmental and phenotypic modifications, with features that are typical for plants strongly induced to tuberize. These changes are likely to be related to altered regulation of photosynthesis and carbohydrate metabolism rather than impaired transduction of inhibitory gibberellin or photoperiod-based signals. The effect of gibberellins on tuberization of ST mutant suggests that gibberellins inhibit tuberization downstream of the inductive effects of sucrose and other positive factors.
PMCID: PMC2613151  PMID: 19025587
19.  Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity 
BMC Plant Biology  2008;8:116.
Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS) in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with Skin Prick Test (SPT) responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars.
From the seven intron-containing Mal d 1 genes investigated, Mal d 1.01 and Mal d 1.02 were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. Mal d 1.04, Mal d 1.05 and Mal d 1.06 A, B and C were more variable, coding for three to six different protein variants. Comparison of Mal d 1 allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the Mal d 1.04 and -1.06A genes (both located on linkage group 16) with allergenicity. This association was confirmed in 10 other cultivars. In addition, Mal d 1.06A allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the Mal d 1.01 (on linkage group 13), -1.02, -1.06B, -1.06C genes (all on linkage group 16), nor by the Mal d 1.05 gene (on linkage group 6).
Protein variant compositions of Mal d 1.04 and -1.06A and, in case of Mal d 1.06A, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information indicates the involvement of qualitative as well as quantitative factors in allergenicity and warrants further research in the relative importance of quantitative and qualitative aspects of Mal d 1 gene expression on allergenicity. Results from this study have implications for medical diagnostics, immunotherapy, clinical research and breeding schemes for new hypo-allergenic cultivars.
PMCID: PMC2596139  PMID: 19014530
20.  Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila 
BMC Plant Biology  2008;8:115.
Thellungiella halophila (also known as Thellungiella salsuginea) is a model halophyte with a small plant size, short life cycle, and small genome. It easily undergoes genetic transformation by the floral dipping method used with its close relative, Arabidopsis thaliana. Thellungiella genes exhibit high sequence identity (approximately 90% at the cDNA level) with Arabidopsis genes. Furthermore, Thellungiella not only shows tolerance to extreme salinity stress, but also to chilling, freezing, and ozone stress, supporting the use of Thellungiella as a good genomic resource in studies of abiotic stress tolerance.
We constructed a full-length enriched Thellungiella (Shan Dong ecotype) cDNA library from various tissues and whole plants subjected to environmental stresses, including high salinity, chilling, freezing, and abscisic acid treatment. We randomly selected about 20 000 clones and sequenced them from both ends to obtain a total of 35 171 sequences. CAP3 software was used to assemble the sequences and cluster them into 9569 nonredundant cDNA groups. We named these cDNAs "RTFL" (RIKEN Thellungiella Full-Length) cDNAs. Information on functional domains and Gene Ontology (GO) terms for the RTFL cDNAs were obtained using InterPro. The 8289 genes assigned to InterPro IDs were classified according to the GO terms using Plant GO Slim. Categorical comparison between the whole Arabidopsis genome and Thellungiella genes showing low identity to Arabidopsis genes revealed that the population of Thellungiella transport genes is approximately 1.5 times the size of the corresponding Arabidopsis genes. This suggests that these genes regulate a unique ion transportation system in Thellungiella.
As the number of Thellungiella halophila (Thellungiella salsuginea) expressed sequence tags (ESTs) was 9388 in July 2008, the number of ESTs has increased to approximately four times the original value as a result of this effort. Our sequences will thus contribute to correct future annotation of the Thellungiella genome sequence. The full-length enriched cDNA clones will enable the construction of overexpressing mutant plants by introduction of the cDNAs driven by a constitutive promoter, the complementation of Thellungiella mutants, and the determination of promoter regions in the Thellungiella genome.
PMCID: PMC2621223  PMID: 19014467
21.  Transcriptomic profiling of mature embryo from an elite super-hybrid rice LYP9 and its parental lines 
BMC Plant Biology  2008;8:114.
The mature embryo of rice (Oryza sativa, L.) is a synchronized and integrated tissue mass laying the foundation at molecular level for its growth, development, and differentiation toward a developing and ultimately a mature plant. We carried out an EST (expressed-sequence-tags)-based transcriptomic study, aiming at gaining molecular insights into embryonic development of a rice hybrid triad–an elite hybrid rice LYP9 and its parental lines (93-11 and PA64s)–and possible relatedness to heterosis.
We generated 27,566 high-quality ESTs from cDNA libraries made from mature rice embryos. We classified these ESTs into 7,557 unigenes (2,511 contigs and 5,046 singletons) and 7,250 (95.9%) of them were annotated. We noticed that the high-abundance genes in mature rice embryos belong to two major functional categories, stress-tolerance and preparation-for-development, and we also identified 191 differentially-expressed genes (General Chi-squared test, P-value <= 0.05) between LYP9 and its parental lines, representing typical expression patterns including over-dominance, high- and low-parent dominance, additivity, and under-dominance. In LYP9, the majority of embryo-associated genes were found not only abundantly and specifically enriched but also significantly up-regulated.
Our results suggested that massively strengthening tissue-(or stage-) characteristic functions may contribute to heterosis rather than a few simple mechanistic explanations at the individual gene level. In addition, the large collection of rice embryonic ESTs provides significant amount of data for future comparative analyses on plant development, especially for the important crops of the grass family.
PMCID: PMC2596138  PMID: 19000321
22.  Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1 
BMC Plant Biology  2008;8:113.
Previous studies showed the ability of Pseudomonas putida strain BTP1 to promote induced systemic resistance (ISR) in different host plants. Since ISR is long-lasting and not conducive for development of resistance of the targeted pathogen, this phenomenon can take part of disease control strategies. However, in spite of the numerous examples of ISR induced by PGPR in plants, only a few biochemical studies have associated the protective effect with specific host metabolic changes.
In this study, we showed the protective effect of this bacterium in tomato against Botrytis cinerea. Following treatment by P. putida BTP1, analyses of acid-hydrolyzed leaf extracts showed an accumulation of antifungal material after pathogen infection. The fungitoxic compounds thus mainly accumulate as conjugates from which active aglycones may be liberated through the activity of hydrolytic enzymes. These results suggest that strain BTP1 can elicit systemic phytoalexin accumulation in tomato as one defence mechanism. On another hand, we have shown that key enzymes of the lipoxygenase pathway are stimulated in plants treated with the bacteria as compared with control plants. Interestingly, this stimulation is observed only after pathogen challenge in agreement with the priming concept almost invariably associated with the ISR phenomenon.
Through the demonstration of phytoalexin accumulation and LOX pathway stimulation in tomato, this work provides new insights into the diversity of defence mechanisms that are inducible by non-pathogenic bacteria in the context of ISR.
PMCID: PMC2596797  PMID: 19000301
23.  Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana 
BMC Plant Biology  2008;8:111.
CBF/DREB duplicate genes are widely distributed in higher plants and encode transcriptional factors, or CBFs, which bind a DNA regulatory element and impart responsiveness to low temperatures and dehydration.
We explored patterns of genetic variations of CBF1, -2, and -3 from 34 accessions of Arabidopsis thaliana. Molecular population genetic analyses of these genes indicated that CBF2 has much reduced nucleotide diversity in the transcriptional unit and promoter, suggesting that CBF2 has been subjected to a recent adaptive sweep, which agrees with reports of a regulatory protein of CBF2. Investigating the ratios of Ka/Ks between all paired CBF paralogus genes, high conservation of the AP2 domain was observed, and the major divergence of proteins was the result of relaxation in two regions within the transcriptional activation domain which was under positive selection after CBF duplication. With respect to the level of CBF gene expression, several mutated nucleotides in the promoters of CBF3 and -1 of specific ecotypes might be responsible for its consistently low expression.
We concluded from our data that important evolutionary changes in CBF1, -2, and -3 may have primarily occurred at the level of gene regulation as well as in protein function.
PMCID: PMC2588587  PMID: 18990244
24.  Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR 
BMC Plant Biology  2008;8:112.
The wild grass species Brachypodium distachyon (Brachypodium hereafter) is emerging as a new model system for grass crop genomics research and biofuel grass biology. A draft nuclear genome sequence is expected to be publicly available in the near future; an explosion of gene expression studies will undoubtedly follow. Therefore, stable reference genes are necessary to normalize the gene expression data.
A systematic exploration of suitable reference genes in Brachypodium is presented here. Nine reference gene candidates were chosen, and their gene sequences were obtained from the Brachypodium expressed sequence tag (EST) databases. Their expression levels were examined by quantitative real-time PCR (qRT-PCR) using 21 different Brachypodium plant samples, including those from different plant tissues and grown under various growth conditions. Effects of plant growth hormones were also visualized in the assays. The expression stability of the candidate genes was evaluated using two analysis software packages, geNorm and NormFinder. In conclusion, the ubiquitin-conjugating enzyme 18 gene (UBC18) was validated as a suitable reference gene across all the plant samples examined. While the expression of the polyubiquitin genes (Ubi4 and Ubi10) was most stable in different plant tissues and growth hormone-treated plant samples, the expression of the S-adenosylmethionine decarboxylase gene (SamDC) ranked was most stable in plants grown under various environmental stresses.
This study identified the reference genes that are most suitable for normalizing the gene expression data in Brachypodium. These reference genes will be particularly useful when stress-responsive genes are analyzed in order to produce transgenic plants that exhibit enhanced stress resistance.
PMCID: PMC2588586  PMID: 18992143
25.  Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures 
BMC Plant Biology  2008;8:110.
The Medicago truncatula (M. truncatula) line 2HA has a 500-fold greater capacity to regenerate plants in culture by somatic embryogenesis than its wild type progenitor Jemalong. To understand the molecular basis for the regeneration capacity of this super-embryogenic line 2HA, using Affymetrix GeneChip®, we have compared transcriptomes of explant leaf cultures of these two lines that were grown on media containing the auxin NAA (1-naphthaleneacetic acid) and the cytokinin BAP (6-benzylaminopurine) for two weeks, an early time point for tissue culture proliferation.
Using Affymetrix GeneChip®, GCRMA normalisation and statistical analysis, we have shown that more than 196 and 49 probe sets were significantly (p < 0.05) up- or down-regulated respectively more than 2 fold in expression. We have utilised GeneBins, a database for classifying gene expression data to distinguish differentially displayed pathways among these two cultures which showed changes in number of biochemical pathways including carbon and flavonoid biosynthesis, phytohormone biosynthesis and signalling. The up-regulated genes in the embryogenic 2HA culture included nodulins, transporters, regulatory genes, embryogenesis related arabinogalactans and genes involved in redox homeostasis, the transition from vegetative growth to reproductive growth and cytokinin signalling. Down-regulated genes included protease inhibitors, wound-induced proteins, and genes involved in biosynthesis and signalling of phytohormones auxin, gibberellin and ethylene. These changes indicate essential differences between the super-embryogenic line 2HA and Jemalong not only in many aspects of biochemical pathways but also in their response to auxin and cytokinin. To validate the GeneChip results, we used quantitative real-time RT-PCR to examine the expression of the genes up-regulated in 2HA such as transposase, RNA-directed DNA polymerase, glycoside hydrolase, RESPONSE REGULATOR 10, AGAMOUS-LIKE 20, flower promoting factor 1, nodulin 3, fasciclin and lipoxygenase, and a down-regulated gene ETHYLENE INSENSITIVE 3, all of which positively correlated with the microarray data.
We have described the differences in transcriptomes between the M. truncatula super-embryogenic line 2HA and its non-embryogenic progenitor Jemalong at an early time point. This data will facilitate the mapping of regulatory and metabolic networks involved in the gaining totipotency and regeneration capacity in M. truncatula and provides candidate genes for functional analysis.
PMCID: PMC2605756  PMID: 18950541

Results 1-25 (134)