PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution 
BMC Plant Biology  2013;13:100.
Background
Type II NAD(PH) dehydrogenases are located on the inner mitochondrial membrane of plants, fungi, protists and some primitive animals. However, recent observations have been made which identify several Arabidopsis type II dehydrogenases as dual targeted proteins. Targeting either mitochondria and peroxisomes or mitochondria and chloroplasts.
Results
Members of the ND protein family were identified in various plant species. Phylogenetic analyses and subcellular targeting predictions were carried out for all proteins. All ND proteins from three model plant species Arabidopsis, rice and Physcomitrella were cloned as N- and C-terminal GFP fusions and subcellular localisations were determined. Dual targeting of plant type II dehydrogenases was observed to have evolved early in plant evolution and to be widespread throughout different plant species. In all three species tested dual targeting to both mitochondria and peroxisomes was found for at least one NDA and NDB type protein. In addition two NDB type proteins from Physcomitrella were also found to target chloroplasts. The dual targeting of NDC type proteins was found to have evolved later in plant evolution.
Conclusions
The functions of type II dehydrogenases within plant cells will have to be re-evaluated in light of this newly identified subcellular targeting information.
doi:10.1186/1471-2229-13-100
PMCID: PMC3716789  PMID: 23841539
Type II NAD(P)H dehydrogenases; Dual targeting; Mitochondria; Peroxisomes; Plastids
2.  Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana 
BMC Plant Biology  2010;10:262.
Background
Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation.
Results
Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis.
Conclusions
These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its regulation. Both plants are shown to employ unique combinations of genes to achieve growth and stress responses. Comparison of these networks provides a more rational approach to translational studies that is based on the response observed in these two diverse plant models.
doi:10.1186/1471-2229-10-262
PMCID: PMC3095337  PMID: 21106056
3.  An in silico analysis of the mitochondrial protein import apparatus of plants 
BMC Plant Biology  2010;10:249.
Background
An in silico analysis of the mitochondrial protein import apparatus from a variety of species; including Chlamydomonas reinhardtii, Chlorella variabilis, Ectocarpus siliculosus, Cyanidioschyzon merolae, Physcomitrella patens, Selaginella moellendorffii, Picea glauca, Oryza sativa and Arabidopsis thaliana was undertaken to determine if components differed within and between plant and non-plant species.
Results
The channel forming subunits of the outer membrane components Tom40 and Sam50 are conserved between plant groups and other eukaryotes. In contrast, the receptor component(s) in green plants, particularly Tom20, (C. reinhardtii, C. variabilis, P. patens, S. moellendorffii, P. glauca, O. sativa and A. thaliana) are specific to this lineage. Red algae contain a Tom22 receptor that is orthologous to yeast Tom22. Furthermore, plant mitochondrial receptors display differences between various plant lineages. These are evidenced by distinctive motifs in all plant Metaxins, which are absent in red algae, and the presence of the outer membrane receptor OM64 in Angiosperms (rice and Arabidopsis), but not in lycophytes (S. moellendorffii) and gymnosperms (P. glauca). Furthermore, although the intermembrane space receptor Mia40 is conserved across a wide phylogenetic range, its function differs between lineages. In all plant lineages, Tim17 contains a C-terminal extension, which may act as a receptor component for the import of nucleic acids into plant mitochondria.
Conclusions
It is proposed that the observed functional divergences are due to the selective pressure to sort proteins between mitochondria and chloroplasts, resulting in differences in protein receptor components between plant groups and other organisms. Additionally, diversity of receptor components is observed within the plant kingdom. Even when receptor components are orthologous across plant and non-plant species, it appears that the functions of these have expanded or diverged in a lineage specific manner.
doi:10.1186/1471-2229-10-249
PMCID: PMC3095331  PMID: 21078193
4.  Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa 
BMC Plant Biology  2010;10:166.
Background
Iron (Fe) is the most limiting micronutrient element for crop production in alkaline soils. A number of transcription factors involved in regulating Fe uptake from soil and transport in plants have been identified. Analysis of transcriptome data from Oryza sativa grown under limiting Fe conditions reveals that transcript abundances of several genes encoding transcription factors are altered by Fe availability. These transcription factors are putative regulators of Fe deficiency responses.
Results
Transcript abundance of one nuclear located basic helix-loop-helix family transcription factor, OsIRO3, is up-regulated from 25- to 90-fold under Fe deficiency in both root and shoot respectively. The expression of OsIRO3 is specifically induced by Fe deficiency, and not by other micronutrient deficiencies. Transgenic rice plants over-expressing OsIRO3 were hypersensitive to Fe deficiency, indicating that the Fe deficiency response was compromised. Furthermore, the Fe concentration in shoots of transgenic rice plants over-expressing OsIRO3 was less than that in wild-type plants. Analysis of the transcript abundances of genes normally induced by Fe deficiency in OsIRO3 over-expressing plants indicated their induction was markedly suppressed.
Conclusion
A novel Fe regulated bHLH transcription factor (OsIRO3) that plays an important role for Fe homeostasis in rice was identified. The inhibitory effect of OsIRO3 over-expression on Fe deficiency response gene expression combined with hypersensitivity of OsIRO3 over-expression lines to low Fe suggest that OsIRO3 is a negative regulator of the Fe deficiency response in rice.
doi:10.1186/1471-2229-10-166
PMCID: PMC3017827  PMID: 20699001
5.  Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets 
BMC Plant Biology  2010;10:56.
Background
Reference genes are widely used to normalise transcript abundance data determined by quantitative RT-PCR and microarrays. However, the approaches taken to define reference genes can be variable. Although Oryza sativa (rice) is a widely used model plant and important crop specie, there has been no comprehensive analysis carried out to define superior reference genes.
Results
Analysis of 136 Affymetrix transcriptome datasets comprising of 373 genome microarrays from studies in rice that encompass tissue, developmental, abiotic, biotic and hormonal transcriptome datasets identified 151 genes whose expression was considered relatively stable under all conditions. A sub-set of 12 of these genes were validated by quantitative RT-PCR and were seen to be stable under a number of conditions. All except one gene that has been previously proposed as a stably expressed gene for rice, were observed to change significantly under some treatment.
Conclusion
A new set of reference genes that are stable across tissue, development, stress and hormonal treatments have been identified in rice. This provides a superior set of reference genes for future studies in rice. It confirms the approach of mining large scale datasets as a robust method to define reference genes, but cautions against using gene orthology or counterparts of reference genes in other plant species as a means of defining reference genes.
doi:10.1186/1471-2229-10-56
PMCID: PMC2923530  PMID: 20353606

Results 1-5 (5)