Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
Year of Publication
Document Types
1.  Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building 
BMC Plant Biology  2012;12:58.
Incarvillea sinensis is widely distributed from Southwest China to Northeast China and in the Russian Far East. The distribution of this species was thought to be influenced by the uplift of the Qinghai-Tibet Plateau and Quaternary glaciation. To reveal the imprints of geological events on the spatial genetic structure of Incarvillea sinensis, we examined two cpDNA segments ( trnH- psbA and trnS- trnfM) in 705 individuals from 47 localities.
A total of 16 haplotypes was identified, and significant genetic differentiation was revealed (GST =0.843, NST = 0.975, P < 0.05). The survey detected two highly divergent cpDNA lineages connected by a deep gap with allopatric distributions: the southern lineage with higher genetic diversity and differentiation in the eastern Qinghai-Tibet Plateau, and the northern lineage in the region outside the Qinghai-Tibet Plateau. The divergence between these two lineages was estimated at 4.4 MYA. A correlation between the genetic and the geographic distances indicates that genetic drift was more influential than gene flow in the northern clade with lower diversity and divergence. However, a scenario of regional equilibrium between gene flow and drift was shown for the southern clade. The feature of spatial distribution of the genetic diversity of the southern lineage possibly indicated that allopatric fragmentation was dominant in the collections from the eastern Qinghai-Tibet Plateau.
The results revealed that the uplift of the Qinghai-Tibet Plateau likely resulted in the significant divergence between the lineage in the eastern Qinghai-Tibet Plateau and the other one outside this area. The diverse niches in the eastern Qinghai-Tibet Plateau created a wide spectrum of habitats to accumulate and accommodate new mutations. The features of genetic diversity of populations outside the eastern Qinghai-Tibet Plateau seemed to reveal the imprints of extinction during the Glacial and the interglacial and postglacial recolonization. Our study is a typical case of the significance of the uplift of the Qinghai-Tibet Plateau and the Quaternary Glacial in spatial genetic structure of eastern Asian plants, and sheds new light on the evolution of biodiversity in the Qinghai-Tibet Plateau at the intraspecies level.
PMCID: PMC3447706  PMID: 22546007
Spatial genetic pattern; cpDNA variations; Phylogeography; Eastern Asian plant
2.  On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae) 
BMC Plant Biology  2009;9:80.
Polyploidy (whole-genome duplication) is an important speciation mechanism, particularly in plants. Gene loss, silencing, and the formation of novel gene complexes are some of the consequences that the new polyploid genome may experience. Despite the recurrent nature of polyploidy, little is known about the genomic outcome of independent polyploidization events. Here, we analyze the fate of genes duplicated by polyploidy (homoeologs) in multiple individuals from ten natural populations of Tragopogon miscellus (Asteraceae), all of which formed independently from T. dubius and T. pratensis less than 80 years ago.
Of the 13 loci analyzed in 84 T. miscellus individuals, 11 showed loss of at least one parental homoeolog in the young allopolyploids. Two loci were retained in duplicate for all polyploid individuals included in this study. Nearly half (48%) of the individuals examined lost a homoeolog of at least one locus, with several individuals showing loss at more than one locus. Patterns of loss were stochastic among individuals from the independently formed populations, except that the T. dubius copy was lost twice as often as T. pratensis.
This study represents the most extensive survey of the fate of genes duplicated by allopolyploidy in individuals from natural populations. Our results indicate that the road to genome downsizing and ultimate genetic diploidization may occur quickly through homoeolog loss, but with some genes consistently maintained as duplicates. Other genes consistently show evidence of homoeolog loss, suggesting repetitive aspects to polyploid genome evolution.
PMCID: PMC2708164  PMID: 19558696
3.  Rapid and accurate pyrosequencing of angiosperm plastid genomes 
BMC Plant Biology  2006;6:17.
Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae).
More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions.
Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically.
PMCID: PMC1564139  PMID: 16934154
4.  An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): characterization and microsatellite markers 
BMC Plant Biology  2006;6:16.
The endemic Hawaiian mints represent a major island radiation that likely originated from hybridization between two North American polyploid lineages. In contrast with the extensive morphological and ecological diversity among taxa, ribosomal DNA sequence variation has been found to be remarkably low. In the past few years, expressed sequence tag (EST) projects on plant species have generated a vast amount of publicly available sequence data that can be mined for simple sequence repeats (SSRs). However, these EST projects have largely focused on crop or otherwise economically important plants, and so far only few studies have been published on the use of intragenic SSRs in natural plant populations. We constructed an EST library from developing fleshy nutlets of Stenogyne rugosa principally to identify genetic markers for the Hawaiian endemic mints.
The Stenogyne fruit EST library consisted of 628 unique transcripts derived from 942 high quality ESTs, with 68% of unigenes matching Arabidopsis genes. Relative frequencies of Gene Ontology functional categories were broadly representative of the Arabidopsis proteome. Many unigenes were identified as putative homologs of genes that are active during plant reproductive development. A comparison between unigenes from Stenogyne and tomato (both asterid angiosperms) revealed many homologs that may be relevant for fruit development. Among the 628 unigenes, a total of 44 potentially useful microsatellite loci were predicted. Several of these were successfully tested for cross-transferability to other Hawaiian mint species, and at least five of these demonstrated interesting patterns of polymorphism across a large sample of Hawaiian mints as well as close North American relatives in the genus Stachys.
Analysis of this relatively small EST library illustrated a broad GO functional representation. Many unigenes could be annotated to involvement in reproductive development. Furthermore, first tests of microsatellite primer pairs have proven promising for the use of Stenogyne rugosa EST SSRs for evolutionary and phylogeographic studies of the Hawaiian endemic mints and their close relatives. Given that allelic repeat length variation in developmental genes of other organisms has been linked with morphological evolution, these SSRs may also prove useful for analyses of phenotypic differences among Hawaiian mints.
PMCID: PMC1560379  PMID: 16928278
5.  Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants 
BMC Plant Biology  2006;6:3.
The glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinases (GSKs) are non-receptor serine/threonine protein kinases that are involved in a variety of biological processes. In contrast to the two members of the GSK3 family in mammals, plants appear to have a much larger set of divergent GSK genes. Plant GSKs are encoded by a multigene family; analysis of the Arabidopsis genome revealed the existence of 10 GSK genes that fall into four major groups. Here we characterized the structure of Arabidopsis and rice GSK genes and conducted the first broad phylogenetic analysis of the plant GSK gene family, covering a taxonomically diverse array of algal and land plant sequences.
We found that the structure of GSK genes is generally conserved in Arabidopsis and rice, although we documented examples of exon expansion and intron loss. Our phylogenetic analyses of 139 sequences revealed four major clades of GSK genes that correspond to the four subgroups initially recognized in Arabidopsis. ESTs from basal angiosperms were represented in all four major clades; GSK homologs from the basal angiosperm Persea americana (avocado) appeared in all four clades. Gymnosperm sequences occurred in clades I, III, and IV, and a sequence of the red alga Porphyra was sister to all green plant sequences.
Our results indicate that (1) the plant-specific GSK gene lineage was established early in the history of green plants, (2) plant GSKs began to diversify prior to the origin of extant seed plants, (3) three of the four major clades of GSKs present in Arabidopsis and rice were established early in the evolutionary history of extant seed plants, and (4) diversification into four major clades (as initially reported in Arabidopsis) occurred either just prior to the origin of the angiosperms or very early in angiosperm history.
PMCID: PMC1524769  PMID: 16504046
6.  Floral gene resources from basal angiosperms for comparative genomics research 
BMC Plant Biology  2005;5:5.
The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants.
Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms.
Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways.
PMCID: PMC1083416  PMID: 15799777

Results 1-6 (6)