PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants 
BMC Plant Biology  2013;13:99.
Background
Genetically modified plants are widely used in agriculture and increasingly in ecological research to enable the selective manipulation of plant traits in the field. Despite their broad usage, many aspects of unwanted transgene silencing throughout plant development are still poorly understood. A transgene can be epigenetically silenced by a process called RNA directed DNA methylation (RdDM), which can be seen as a heritable loss of gene expression. The spontaneous nature of transgene silencing has been widely reported, but patterns of acquirement remain still unclear.
Results
Transgenic wild tobacco plants (Nicotiana attenuata) expressing heterologous genes coding for antimicrobial peptides displayed an erratic and variable occurrence of transgene silencing. We focused on three independently transformed lines (PNA 1.2, PNA 10.1 and ICE 4.4) as they rapidly lost the expression of the resistance marker and down-regulated transgene expression by more than 200 fold after only one plant generation. Bisulfite sequencing indicated hypermethylation within the 35S and NOS promoters of these lines. To shed light on the progress of methylation establishment, we successively sampled leaf tissues from different stages during plant development and found a rapid increase in 35S promoter methylation during vegetative growth (up to 77% absolute increase within 45 days of growth). The levels of de novo methylation were inherited by the offspring without any visible discontinuation. A secondary callus regeneration step could interfere with the establishment of gene silencing and we found successfully restored transgene expression in the offspring of several regenerants.
Conclusions
The unpredictability of the gene silencing process requires a thorough selection and early detection of unstable plant lines. De novo methylation of the transgenes was acquired solely during vegetative development and did not require a generational change for its establishment or enhancement. A secondary callus regeneration step provides a convenient way to rescue transgene expression without causing undesirable morphological effects, which is essential for experiments that use transformed plants in the analysis of ecologically important traits.
doi:10.1186/1471-2229-13-99
PMCID: PMC3716894  PMID: 23837904
2.  Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves 
BMC Plant Biology  2010;10:164.
Background
Some plants distinguish mechanical wounding from herbivore attack by recognizing specific constituents of larval oral secretions (OS) which are introduced into plant wounds during feeding. Fatty acid-amino acid conjugates (FACs) are major constituents of Manduca sexta OS and strong elicitors of herbivore-induced defense responses in Nicotiana attenuata plants.
Results
The metabolism of one of the major FACs in M. sexta OS, N-linolenoyl-glutamic acid (18:3-Glu), was analyzed on N. attenuata wounded leaf surfaces. Between 50 to 70% of the 18:3-Glu in the OS or of synthetic 18:3-Glu were metabolized within 30 seconds of application to leaf wounds. This heat-labile process did not result in free α-linolenic acid (18:3) and glutamate but in the biogenesis of metabolites both more and less polar than 18:3-Glu. Identification of the major modified forms of this FAC showed that they corresponded to 13-hydroxy-18:3-Glu, 13-hydroperoxy-18:3-Glu and 13-oxo-13:2-Glu. The formation of these metabolites occurred on the wounded leaf surface and it was dependent on lipoxygenase (LOX) activity; plants silenced in the expression of NaLOX2 and NaLOX3 genes showed more than 50% reduced rates of 18:3-Glu conversion and accumulated smaller amounts of the oxygenated derivatives compared to wild-type plants. Similar to 18:3-Glu, 13-oxo-13:2-Glu activated the enhanced accumulation of jasmonic acid (JA) in N. attenuata leaves whereas 13-hydroxy-18:3-Glu did not. Moreover, compared to 18:3-Glu elicitation, 13-oxo-13:2-Glu induced the differential emission of two monoterpene volatiles (β-pinene and an unidentified monoterpene) in irlox2 plants.
Conclusions
The metabolism of one of the major elicitors of herbivore-specific responses in N. attenuata plants, 18:3-Glu, results in the formation of oxidized forms of this FAC by a LOX-dependent mechanism. One of these derivatives, 13-oxo-13:2-Glu, is an active elicitor of JA biosynthesis and differential monoterpene emission.
doi:10.1186/1471-2229-10-164
PMCID: PMC3095298  PMID: 20696061

Results 1-2 (2)