PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Characterization of a panel of Vietnamese rice varieties using DArT and SNP markers for association mapping purposes 
BMC Plant Biology  2014;14:371.
Background
The development of genome-wide association studies (GWAS) in crops has made it possible to mine interesting alleles hidden in gene bank resources. However, only a small fraction of the rice genetic diversity of any given country has been exploited in the studies with worldwide sampling conducted to date. This study presents the development of a panel of rice varieties from Vietnam for GWAS purposes.
Results
The panel, initially composed of 270 accessions, was characterized for simple agronomic traits (maturity class, grain shape and endosperm type) commonly used to classify rice varieties. We first genotyped the panel using Diversity Array Technology (DArT) markers. We analyzed the panel structure, identified two subpanels corresponding to the indica and japonica sub-species and selected 182 non-redundant accessions. However, the number of usable DArT markers (241 for an initial library of 6444 clones) was too small for GWAS purposes. Therefore, we characterized the panel of 182 accessions with 25,971 markers using genotyping by sequencing. The same indica and japonica subpanels were identified. The indica subpanel was further divided into six populations (I1 to I6) using a model-based approach. The japonica subpanel, which was more highly differentiated, was divided into 4 populations (J1 to J4), including a temperate type (J2). Passport data and phenotypic traits were used to characterize these populations. Some populations were exclusively composed of glutinous types (I3 and J2). Some of the upland rice varieties appeared to belong to indica populations, which is uncommon in this region of the world. Linkage disequilibrium decayed faster in the indica subpanel (r2 below 0.2 at 101 kb) than in the japonica subpanel (r2 below 0.2 at 425 kb), likely because of the strongest differentiation of the japonica subpanel. A matrix adapted for GWAS was built by eliminating the markers with a minor allele frequency below 5% and imputing the missing data. This matrix contained 21,814 markers. A GWAS was conducted on time to flowering to prove the utility of this panel.
Conclusions
This publicly available panel constitutes an important resource giving access to original allelic diversity. It will be used for GWAS on root and panicle traits.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0371-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-014-0371-7
PMCID: PMC4279583  PMID: 25524444
DArT markers; SNP; Genetic diversity; Linkage disequilibrium; Rice; Vietnam
2.  Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding 
BMC Plant Biology  2012;12:26.
Background
Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication.
Results
A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication.
Conclusion
In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.
doi:10.1186/1471-2229-12-26
PMCID: PMC3312858  PMID: 22340522
3.  A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas 
BMC Plant Biology  2010;10:65.
Background
The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents.
Results
An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p < 0.05) from the expected Mendelian ratios. These skewed markers were distributed in different linkage groups for each parent. To solve some complex ordering of the markers on linkage groups, we associated tools such as tree-like graphic representations, recombination frequency statistics and cytogenetical studies to identify structural rearrangements and build parsimonious linkage group order. An illustration of such an approach is given for the P. Lilin parent.
Conclusions
We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs) covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation.
doi:10.1186/1471-2229-10-65
PMCID: PMC2923539  PMID: 20388207
4.  Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid 
BMC Plant Biology  2009;9:103.
Background
Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis.
Results
Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best possible return to the background of the cultivated variety provided a set of lines offering an optimal distribution of the wild introgressions.
Conclusion
The genetic map developed, allowed the synteny analysis of the A and B genomes, the comparison with diploid and tetraploid maps and the analysis of the introgression segments from the wild synthetic into the background of a cultivated variety. The material we have produced in this study should facilitate the development of advanced backcross and CSSL breeding populations for the improvement of cultivated peanut.
doi:10.1186/1471-2229-9-103
PMCID: PMC3091533  PMID: 19650911

Results 1-4 (4)