Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
more »
Year of Publication
Document Types
1.  miSolRNA: A tomato micro RNA relational database 
BMC Plant Biology  2010;10:240.
The economic importance of Solanaceae plant species is well documented and tomato has become a model for functional genomics studies. In plants, important processes are regulated by microRNAs (miRNA).
We describe here a data base integrating genetic map positions of miRNA-targeted genes, their expression profiles and their relations with quantitative fruit metabolic loci and yield associated traits. miSolRNA provides a metadata source to facilitate the construction of hypothesis aimed at defining physiological modes of action of regulatory process underlying the metabolism of the tomato fruit.
The MiSolRNA database allows the simple extraction of metadata for the proposal of new hypothesis concerning possible roles of miRNAs in the regulation of tomato fruit metabolism. It permits i) to map miRNAs and their predicted target sites both on expressed (SGN-UNIGENES) and newly annotated sequences (BAC sequences released), ii) to co-locate any predicted miRNA-target interaction with metabolic QTL found in tomato fruits, iii) to retrieve expression data of target genes in tomato fruit along their developmental period and iv) to design further experiments for unresolved questions in complex trait biology based on the use of genetic materials that have been proven to be a useful tools for map-based cloning experiments in Solanaceae plant species.
PMCID: PMC3095322  PMID: 21059227
2.  Chromosomal loci important for cotyledon opening under UV-B in Arabidopsis thaliana 
BMC Plant Biology  2010;10:112.
Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal transduction pathways.
Composite interval mapping and single-marker analysis methods were used to identify significant loci for cotyledon opening under UV-B in four sets of recombinant inbred lines. In addition, loci important for canalization (stability) of cotyledon opening were detected in two mapping populations. One candidate locus contained the gene HY5. Mutant analysis demonstrated that HY5 was required for UV-B-specific cotyledon opening.
Structured mapping populations provide key information on the degree of complexity in the genetic control of UV-B-induced cotyledon opening in Arabidopsis. The loci identified using quantitative trait analysis methods are useful for follow-up testing of candidate genes.
PMCID: PMC3095277  PMID: 20565708

Results 1-2 (2)