Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
Year of Publication
Document Types
1.  P-TRAP: a Panicle Trait Phenotyping tool 
BMC Plant Biology  2013;13:122.
In crops, inflorescence complexity and the shape and size of the seed are among the most important characters that influence yield. For example, rice panicles vary considerably in the number and order of branches, elongation of the axis, and the shape and size of the seed. Manual low-throughput phenotyping methods are time consuming, and the results are unreliable. However, high-throughput image analysis of the qualitative and quantitative traits of rice panicles is essential for understanding the diversity of the panicle as well as for breeding programs.
This paper presents P-TRAP software (Panicle TRAit Phenotyping), a free open source application for high-throughput measurements of panicle architecture and seed-related traits. The software is written in Java and can be used with different platforms (the user-friendly Graphical User Interface (GUI) uses Netbeans Platform 7.3). The application offers three main tools: a tool for the analysis of panicle structure, a spikelet/grain counting tool, and a tool for the analysis of seed shape. The three tools can be used independently or simultaneously for analysis of the same image. Results are then reported in the Extensible Markup Language (XML) and Comma Separated Values (CSV) file formats. Images of rice panicles were used to evaluate the efficiency and robustness of the software. Compared to data obtained by manual processing, P-TRAP produced reliable results in a much shorter time. In addition, manual processing is not repeatable because dry panicles are vulnerable to damage. The software is very useful, practical and collects much more data than human operators.
P-TRAP is a new open source software that automatically recognizes the structure of a panicle and the seeds on the panicle in numeric images. The software processes and quantifies several traits related to panicle structure, detects and counts the grains, and measures their shape parameters. In short, P-TRAP offers both efficient results and a user-friendly environment for experiments. The experimental results showed very good accuracy compared to field operator, expert verification and well-known academic methods.
PMCID: PMC3848748  PMID: 23987653
Phenotyping; 2D images; Panicle; Seed; Structure; Rice
2.  Promzea: a pipeline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas 
BMC Plant Biology  2013;13:42.
The discovery of genetic networks and cis-acting DNA motifs underlying their regulation is a major objective of transcriptome studies. The recent release of the maize genome (Zea mays L.) has facilitated in silico searches for regulatory motifs. Several algorithms exist to predict cis-acting elements, but none have been adapted for maize.
A benchmark data set was used to evaluate the accuracy of three motif discovery programs: BioProspector, Weeder and MEME. Analysis showed that each motif discovery tool had limited accuracy and appeared to retrieve a distinct set of motifs. Therefore, using the benchmark, statistical filters were optimized to reduce the false discovery ratio, and then remaining motifs from all programs were combined to improve motif prediction. These principles were integrated into a user-friendly pipeline for motif discovery in maize called Promzea, available at and on the Discovery Environment of the iPlant Collaborative website. Promzea was subsequently expanded to include rice and Arabidopsis. Within Promzea, a user enters cDNA sequences or gene IDs; corresponding upstream sequences are retrieved from the maize genome. Predicted motifs are filtered, combined and ranked. Promzea searches the chosen plant genome for genes containing each candidate motif, providing the user with the gene list and corresponding gene annotations. Promzea was validated in silico using a benchmark data set: the Promzea pipeline showed a 22% increase in nucleotide sensitivity compared to the best standalone program tool, Weeder, with equivalent nucleotide specificity. Promzea was also validated by its ability to retrieve the experimentally defined binding sites of transcription factors that regulate the maize anthocyanin and phlobaphene biosynthetic pathways. Promzea predicted additional promoter motifs, and genome-wide motif searches by Promzea identified 127 non-anthocyanin/phlobaphene genes that each contained all five predicted promoter motifs in their promoters, perhaps uncovering a broader co-regulated gene network. Promzea was also tested against tissue-specific microarray data from maize.
An online tool customized for promoter motif discovery in plants has been generated called Promzea. Promzea was validated in silico by its ability to retrieve benchmark motifs and experimentally defined motifs and was tested using tissue-specific microarray data. Promzea predicted broader networks of gene regulation associated with the historic anthocyanin and phlobaphene biosynthetic pathways. Promzea is a new bioinformatics tool for understanding transcriptional gene regulation in maize and has been expanded to include rice and Arabidopsis.
PMCID: PMC3658923  PMID: 23497159
Promoter; cis-acting; Motif; Maize; Anthocyanin; Phlobaphene; Bioprospector; MEME; Weeder; C1; P
3.  GiA Roots: software for the high throughput analysis of plant root system architecture 
BMC Plant Biology  2012;12:116.
Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks.
We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user.
We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.
PMCID: PMC3444351  PMID: 22834569
4.  LAMINA: a tool for rapid quantification of leaf size and shape parameters 
BMC Plant Biology  2008;8:82.
An increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process.
We have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned.
We demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow.
PMCID: PMC2500018  PMID: 18647399
5.  Development of a novel data mining tool to find cis-elements in rice gene promoter regions 
BMC Plant Biology  2008;8:20.
Information on more than 35 000 full-length Oryza sativa cDNAs, together with associated microarray gene expression data collected under various treatment conditions, has made it feasible to identify motifs that are conserved in gene promoters and may act as cis-regulatory elements with key roles under the various conditions.
We have developed a novel tool that searches for cis-element candidates in the upstream, downstream, or coding regions of differentially regulated genes. The tool first lists cis-element candidates by motif searching based on the supposition that if there are cis-elements playing important roles in the regulation of a given set of genes, they will be statistically overrepresented and will be conserved. Then it evaluates the likelihood scores of the listed candidate motifs by association rule analysis. This strategy depends on the idea that motifs overrepresented in the promoter region could play specific roles in the regulation of expression of these genes. The tool is designed so that any biological researchers can use it easily at the publicly accessible Internet site . We evaluated the accuracy and utility of the tool by using a dataset of auxin-inducible genes that have well-studied cis-elements. The test showed the effectiveness of the tool in identifying significant relationships between cis-element candidates and related sets of genes.
The tool lists possible cis-element motifs corresponding to genes of interest, and it will contribute to the deeper understanding of gene regulatory mechanisms in plants.
PMCID: PMC2270273  PMID: 18302796

Results 1-5 (5)