PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Protein expression of G-protein inwardly rectifying potassium channels (GIRK) in breast cancer cells 
BMC Physiology  2006;6:8.
Background
Previous data from our laboratory has indicated that a functional link exists between the G-protein-coupled inwardly rectifying potassium (GIRK) channel and the beta-adrenergic receptor pathway in breast cancer cell lines, and these pathways were involved in growth regulation of these cells. Alcohol is an established risk factor for breast cancer and has been found to open GIRK. In order to further investigate GIRK channels in breast cancer and possible alteration by ethanol, we identified GIRK channel protein expression in breast cancer cells.
Results
Cell pellets were collected and membrane protein was isolated to determine GIRK protein expression. GIRK protein was also analyzed by immuno-precipitation. GIRK protein was over-expressed in cells by transfection of GIRK plasmids. Gene expression studies were done by real-time RT-PCR. GIRK protein expression was identified in breast cancer cell lines. Expression of GIRK1 at the indicated molecular weight (MW) (62 kDa) was seen in cell lines MDA-MB-453 and ZR-75-1. In addition, GIRK1 expression was seen at a lower MW (40–42 kDa) in MDA-MB-361, MDA-MB-468, MCF-7, ZR-75-1, and MDA-MB-453 cell lines. To prove the lower MW protein was GIRK1, MDA-MB-453 cells were immuno-precipitated. GIRK2 expression was seen in MDA-MB-468, MCF-7, and ZR-75-1 and was variable in MDA-MB-453, while GIRK4 protein expression was seen in all six cell lines tested. This is the first report indicating GIRK protein expression in breast cancer cells. To determine functionality, MDA-MB-453 cells were stimulated with ethanol. Decreased GIRK1 protein expression levels were seen after treatment with 0.12% ethanol in MDA-MB-453 breast cancer cells. Serum-free media decreased GIRK protein expression, possibly due to lack of estrogen in the media. Transfection of GIRK1 or GIRK4 plasmids increased GIRK1 protein expression and decreased gene expression in MDA-MB-453 breast cancer cells.
Conclusion
Our data indicates that functional GIRK channels exist in breast cancer cells that are involved in cellular signaling.
doi:10.1186/1472-6793-6-8
PMCID: PMC1574343  PMID: 16945134
2.  Inspiratory resistances facilitate the diaphragm response to transcranial stimulation in humans 
BMC Physiology  2006;6:7.
Background
Breathing in humans is dually controlled for metabolic (brainstem commands) and behavioral purposes (suprapontine commands) with reciprocal modulation through spinal integration. Whereas the ventilatory response to chemical stimuli arises from the brainstem, the compensation of mechanical loads in awake humans is thought to involve suprapontine mechanisms. The aim of this study was to test this hypothesis by examining the effects of inspiratory resistive loading on the response of the diaphragm to transcranial magnetic stimulation.
Results
Six healthy volunteers breathed room air without load (R0) and then against inspiratory resistances (5 and 20 cmH2O/L/s, R5 and R20). Ventilatory variables were recorded. Transcranial magnetic stimulation (TMS) was performed during early inspiration (I) or late expiration (E), giving rise to motor evoked potentials (MEPs) in the diaphragm (Di) and abductor pollicis brevis (APB). Breathing frequency significantly decreased during R20 without any other change. Resistive breathing had no effect on the amplitude of Di MEPs, but shortened their latency (R20: -0.903 ms, p = 0.03) when TMS was superimposed on inspiration. There was no change in APB MEPs.
Conclusion
Inspiratory resistive breathing facilitates the diaphragm response to TMS while it does not increase the automatic drive to breathe. We interpret these findings as a neurophysiological substratum of the suprapontine nature of inspiratory load compensation in awake humans.
doi:10.1186/1472-6793-6-7
PMCID: PMC1555603  PMID: 16875504
3.  An immune response in the bumblebee, Bombus terrestris leads to increased food consumption 
BMC Physiology  2006;6:6.
Background
The concept of a costly immune system that must be traded off against other important physiological systems is fundamental to the burgeoning field of ecological immunity. Bumblebees have become one of the central models in this field. Although previous work has demonstrated costs of immunity in numerous life history traits, estimates of the more direct costs of bumblebee immunity have yet to be made.
Results
Here we show a 7.5% increase in energy consumption in response to non-pathogenic immune stimulation.
Conclusion
This increase in energy consumption along with other results suggests that immunity is one of the most important physiological systems, with other systems being sacrificed for its continuing efficiency. This increased consumption and maintained activity contrasts with the sickness-induced anorexia and reduced activity found in vertebrates.
doi:10.1186/1472-6793-6-6
PMCID: PMC1538623  PMID: 16846495
4.  Heart rate variability in conscious neonatal swine: spectral features and responses to short-term intermittent hypoxia 
BMC Physiology  2006;6:5.
Background
Spectral analysis of the cardiac time series has been used as a tool for assessing levels of parasympathetic and sympathetic modulation of the sinoatrial node. In the present investigation we evaluated daily changes in heart rate variability spectra in conscious neonatal piglets that were either neurally intact (n = 5) or had undergone right stellate ganglionectomy (n = 5). The partial stellectomized animals and their intact litter mates were exposed to four days of intermittent hypoxia, each day comprising nine episodes of hypoxia alternating with nine episodes of normoxia. A time control group (n = 7) comprised animals from different litters that were not exposed to intermittent hypoxia. We hypothesized that exposure to intermittent hypoxia would increase sympathetic efferent neuronal modulation of heart rate variability spectra in neurally intact animals and in those with right stellate ganglionectomy, and that his effect would be observed in heart rate variability spectra computed from baseline recordings.
Results
Overall, heart rate variability spectra during baseline conditions were dominated by high frequency activity, a reflection of parasympathetic efferent neuronal innervation and linkage to the ventilatory cycle manifested as respiratory sinus arrhythmia. Exposure to intermittent hypoxia did not alter daily baseline spectral features that would indicate an increase of sympathetic cardiac activity: low frequency (0.05 – 0.15 Hz) activity was unaffected and the ratio of low- to -high frequency activity remained less than unity indicating a predominance of high frequency activity. The resultant spectra were remarkably similar despite differences in cardiac sympathetic efferent neuronal innervation and experimental treatment. When spectra were computed from cardiac time series during representative hypoxic episodes, significant increases in activity across the low frequency region (0.05 – 0.15 Hz) of heart rate variability spectra were noted and were comparable in neurally intact animals and in those with right stellate ganglionectomy.
Conclusion
The findings of this investigation provided important information regarding sympathetic efferent neuronal innervation of the heart during the neonatal period. Both neurally intact animals and those with right stellate ganglionectomy had equivalent increases of activity in the low frequency region of heart rate variability spectra during hypoxic stimulation. Such a finding demonstrated the capability of residual cardiac sympathetic neuronal innervation to affect functionally appropriate changes in cardiac chronotropy.
doi:10.1186/1472-6793-6-5
PMCID: PMC1523191  PMID: 16780581
5.  Streptozotocin-induced diabetes in the rat is associated with changes in vaginal hemodynamics, morphology and biochemical markers 
BMC Physiology  2006;6:4.
Background
Diabetes is associated with declining sexual function in women. However, the effects of diabetes on genital tissue structure, innervation and function remains poorly characterized. In control and streptozotocin-treated female rats, we investigated the effects of diabetes on vaginal blood flow, tissue morphology, and expression of arginase I, endothelial nitric oxide synthase (eNOS) and cGMP-dependent protein kinase (PKG), key enzymes that regulate smooth muscle relaxation. We further related these changes with estrogen receptor alpha (ERα) and androgen receptor (AR) expression.
Results
In addition to significantly elevated blood glucose levels, diabetic rats had decreased mean body weight, lower levels of plasma estradiol, and higher plasma testosterone concentration, compared to age-matched controls. Eight weeks after administration of buffer (control) or 65 mg/kg of streptozotocin (diabetic), the vaginal blood flow response to pelvic nerve stimulation was significantly reduced in diabetic rats. Histological examination of vaginal tissue from diabetic animals showed reduced epithelial thickness and atrophy of the muscularis layer. Diabetic animals also had reduced vaginal levels of eNOS and arginase I, but elevated levels of PKG, as assessed by Western blot analyses. These alterations were accompanied by a reduction in both ERα and AR in nuclear extracts of vaginal tissue from diabetic animals.
Conclusion
In ovariectomized (estrogen deficient) animals, previous reports from our lab and others have documented changes in blood flow, tissue structure, ERα, arginase I and eNOS that parallel those observed in diabetic rats. We hypothesize that diabetes may lead to multiple disruptions in sex steroid hormone synthesis, metabolism and action. These pathological events may cause dramatic changes in tissue structure and key enzymes that regulate cell growth and smooth muscle contractility, ultimately affecting the genital response during sexual arousal.
doi:10.1186/1472-6793-6-4
PMCID: PMC1481539  PMID: 16734901
6.  A strategy for determining arterial blood gases on the summit of Mt. Everest 
BMC Physiology  2006;6:3.
Background
Climbers on the summit of Mt. Everest are exposed to extreme hypoxia, and the physiological implications are of great interest. Inferences have been made from alveolar gas samples collected on the summit, but arterial blood samples would give critical information. We propose a plan to insert an arterial catheter at an altitude of 8000 m, take blood samples above this using an automatic sampler, store the samples in glass syringes in an ice-water slurry, and analyze them lower on the mountain 4 to 6 hours later.
Results
A preliminary design of the automatic sampler was successfully tested at the White Mountain Research Station (altitude 3800 m – 4300 m). To determine how much the blood gases changed over a long period, rabbit blood was tonometered to give a gas composition close to that expected on the summit (PO2 4.0 kPa (30 mmHg), PCO2 1.3 kPa (10 mmHg), pH 7.7) and the blood gases were measured every 2 hours for 8 hours both at sea level and 3800 m. The mean changes were PO2 +0.3 to +0.4 kPa (+2 to +3 mmHg), PCO2 0 to +0.13 kPa (+1 mmHg), pH -0.02 to -0.04, base excess -0.7 to -1.2 mM. In practice the delay before analysis should not exceed 4 to 6 hours. The small paradoxical rise in PO2 is presumably caused mainly by contamination of the blood with air.
Conclusion
We conclude that automatic arterial blood sampling at high altitude is technically feasible and that the changes in the blood gases over a period of several hours are acceptably small.
doi:10.1186/1472-6793-6-3
PMCID: PMC1421431  PMID: 16524477
7.  Proinflammatory cytokines tumor necrosis factor-α and interferon-γ modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling 
BMC Physiology  2006;6:2.
Background
The tight junction is a dynamic structure that is regulated by a number of cellular signaling processes. Occludin, claudin-1, claudin-2 and claudin-3 are integral membrane proteins found in the tight junction of MDCK cells. These proteins are restricted to this region of the membrane by a complex array of intracellular proteins which are tethered to the cytoskeleton. Alteration of these tight junction protein complexes during pathological events leads to impaired epithelial barrier function that perturbs water and electrolyte homeostasis. We examined MDCK cell barrier function in response to challenge by the proinflammatory cytokines tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ).
Results
Exposure of MDCK cells to TNFα/IFNγ resulted in a marked sustained elevation of transepithelial electrical resistance (TER) as well as elevated paracellular permeability. We demonstrate that the combination of TNFα/IFNγ at doses used in this study do not significantly induce MDCK cell apoptosis. We observed significant alterations in occludin, claudin-1 and claudin-2 protein expression, junctional localization and substantial cytoskeletal reorganization. Pharmacological inhibition of ERK1/2 and p38 signaling blocked the deleterious effects of the proinflammatory cytokines on barrier function.
Conclusion
These data strongly suggest that downstream effectors of MAP kinase signaling pathways mediate the TNFα/IFNγ-induced junctional reorganization that modulates MDCK cell barrier function.
doi:10.1186/1472-6793-6-2
PMCID: PMC1402323  PMID: 16504032
8.  The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa 
BMC Physiology  2006;6:1.
Background
An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks.
Results
It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that influence the smooth muscle phenotype. In the control detrusor network the Pax-3 TRE was significantly over-represented. During development, the Pax-3 transcription factor (TF) maintains progenitor cells in an undifferentiated state whereas, during inflammation, Pax-3 was suppressed and genes involved in neuronal development (synapsin I) were up-regulated. Therefore, during inflammation, an increased maturation of neural progenitor cells in the muscle may underlie detrusor instability. NF-κB was specifically over-represented in the inflamed mucosa regulatory network. When the inflamed detrusor was compared to control, two major pathways were found, one encoding synapsin I, a neuron-specific phosphoprotein, and the other an important apoptotic protein, siva. In response to LPS-induced inflammation, the liver X receptor was over-represented in both mucosa and detrusor regulatory networks confirming a role for this nuclear receptor in LPS-induced gene expression.
Conclusion
A new approach for understanding bladder muscle-urothelium interaction was developed by assembling SSH, real time PCR, and TRE analysis results into regulatory networks. Interestingly, some of the TREs and their downstream transcripts originally involved in organogenesis and oncogenesis were also activated during inflammation. The latter represents an additional link between inflammation and cancer. The regulatory networks represent key targets for development of novel drugs targeting bladder diseases.
doi:10.1186/1472-6793-6-1
PMCID: PMC1382248  PMID: 16420690

Results 1-8 (8)